

Documentation with RST

	Author

	Roland Puntaier

	Overview
	Purpose

	Files
	readme.rest

	ra.rest

	sr.rest

	dd.rest

	tp.rest

	rstdoc.rest

	Dependencies

	Risk Analysis
	Purpose

	Qualitative Analysis
	Productivity

	Formatting vs Content

	Final Version

	Parallelism

	Traceability
	Trace changes

	Trace dependencies

	Accessibility
	Hypertext

	Search

	Community

	Sustainability

	Redundancy

	Automation
	Scripting

	Templates

	Quantitative Analysis
	Introduction to risk analysis

	Countermeasures

	Risk analysis for documenting with RST

	Events

	Result

	System Requirements
	Purpose

	Requirements on Documentation

	Requirements on Project

	Design Description
	Purpose

	Documentation Format
	The ID

	Files

	Tools

	Motivation
	Light Markup

	RST

	Hypertext

	Editor
	Vim

	Atom

	Scripting

	Build System

	Generated documentation

	Templating

	Data

	Project Site

	Test Plan
	Purpose

	Test Driver

	Test Coverage

	Tests
	rstdcx, dcx.py

	RST tables

	rstdoc
	Purpose

	rstdoc(1) Version 1.8.2 | rstdoc
	rstdcx
	Conventions

	rstdcx CLI

	Examples

	API

	rstfromdocx
	API

	rstlisttable
	Options

	API

	rstuntable
	API

	rstreflow
	API

	rstreimg
	API

	rstretable
	API

Overview

Github does not support include.
You can find a rendered version on
readthedocs [https://rstdoc.readthedocs.io/en/latest/].

Purpose

The doc folder

	motivates to use light markup text, specifically
restructuredText [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html],
over DOCX or ODT for documentation of software projects

	is an example documentation using
rstdoc [https://rstdoc.readthedocs.io/en/latest/],
a wrapper around
Sphinx [http://www.sphinx-doc.org/en/stable/]
and
Pandoc [https://pandoc.org/]

For your project documenation a readme

	gives an overview of the documents: Files

	summaries dependencies between the documents: Dependencies

Files

readme.rest

Overview

readme.rest provides an overview of the documentation,
such that new team members or reviewers can find their way in the documentation.

No actual content is placed in the readme.rest file.

ra.rest

Risk Analysis

Motivations and risks.

The argumentation is kept general to
motivate general requirements that do not presume solutions.

sr.rest

System Requirements

General requirements motivated from Risk Analysis.

dd.rest

Design Description

The detailed choices made to satisfy System Requirements.

Here the actual format, the conventions and the tools
are proposed.

tp.rest

Test Plan

Documentation for the tests of this package (rstdoc).

rstdoc.rest

rstdoc

The description of the python API and command line tools provided by this package.

Dependencies

FCA
 diagram of dependencies with clickable nodes: ra lightblue, sr red, dd yellow, tp green

	tr0

	

dhy, r1p, Sustainability, r8d, r90, r9g, Community, Parallelism, Traceability, rj4, Redundancy, Formatting vs Content, rstdcx, Accessibility, Automation, Productivity, s0t, s10, s1g, s45, s8c, scs, seo, sgt, sim, System Requirements, sxr, test_lnkname

Up: tr2, tr4, tr5, tr7, tr8, tr10, tr12, tr13, tr14, tr15, tr16, tr17

Down:

	tr1

	

Up:

Down: tr3, tr6, tr9, tr11, tr14, tr15, tr16, tr17

	tr2

	

Accessibility, scs

Up: tr3

Down: tr0

	tr3

	

Accessibility

Up: tr1

Down: tr2, tr4, tr5

	tr4

	

Sustainability, r9g, Community, Traceability, rj4, Formatting vs Content, rstdcx, Accessibility, Productivity, s45, sgt

Up: tr3, tr6, tr9

Down: tr0

	tr5

	

Accessibility, sim

Up: tr3

Down: tr0

	tr6

	

Traceability

Up: tr1

Down: tr4, tr7, tr8

	tr7

	

Traceability, s0t

Up: tr6

Down: tr0

	tr8

	

Traceability, s10

Up: tr6

Down: tr0

	tr9

	

sgt

Up: tr1

Down: tr4, tr10

	tr10

	

r1p, Redundancy, sgt

Up: tr9, tr11

Down: tr0

	tr11

	

Redundancy

Up: tr1

Down: tr10, tr12, tr13

	tr12

	

r8d, Redundancy, s8c

Up: tr11

Down: tr0

	tr13

	

Redundancy, s1g

Up: tr11

Down: tr0

	tr14

	

dhy, Parallelism

Up: tr1

Down: tr0

	tr15

	

r90, seo

Up: tr1

Down: tr0

	tr16

	

Automation, sxr

Up: tr1

Down: tr0

	tr17

	

System Requirements, test_lnkname

Up: tr1

Down: tr0

[image: _images/_traceability_file.png]

Figure 1: FCA [https://en.wikipedia.org/wiki/Formal_concept_analysis] diagram of dependencies: ra lightblue, sr red, dd yellow, tp green

Risk Analysis

Purpose

This risk analysis focuses on displaying the benefits
of using light markup [https://en.wikipedia.org/wiki/Lightweight_markup_language] text,
and specifically RST [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html], for documentation of (software) projects.

This file also

	tries a quantitative estimation of the advantages and disadvantages: Risk analysis for documenting with RST

	motivates the Requirements on Documentation

This whole documentation is an example for documentation using RST.
Specifically this file’s original is a template file
that integrates automatic generation of some of its parts.

Only a part of rstdoc documentation deals with the provided python code.

Qualitative Analysis

Productivity

To have more evolution with less effort one must change the tools to better productivity.

The objective is to find a documentation format that is more productive than
MS Office or Libre Office for technical documentation.

DOCX [http://www.ecma-international.org/publications/standards/Ecma-376.htm] or ODT [https://en.wikipedia.org/wiki/OpenDocument] cannot be well integrated into a software project.
The reason does not lie in the writing itself,
but in the organization of information and the further development and handling of text.
They

	have low accessibility: san, stq

	have low traceability: s9v, s0t

	produce too much redundancy: sgt, s8c

	are no good for automation: sgt, s8c

As a result:

	They lead to low productivity (sa7).

	The quality of the content suffers.

Code is written in a text editor. Documentation must be written with the same text editor.
It brings overhead to access information with two different tools.

Formatting vs Content

	r9g

	s45

The purpose of DOCX [http://www.ecma-international.org/publications/standards/Ecma-376.htm] or ODT [https://en.wikipedia.org/wiki/OpenDocument], in general the WYSIWYG [https://en.wikipedia.org/wiki/WYSIWYG] idea,
is about providing easy formatting.
The information coded in a human language is surrounded by layers of formatting.

	The DOCX [http://www.ecma-international.org/publications/standards/Ecma-376.htm] XML files are zipped, which makes them binary.

	The XML-based formatting is so full of formatting markup, that it is not very readable.
This also applies to non-zipped formats like docbook [https://en.wikipedia.org/wiki/DocBook].

But formatting should have no importance in development.

There is a less obtrusive alternative for formatting than via XML, HTML or even TeX:

	light markup [https://en.wikipedia.org/wiki/Lightweight_markup_language].

The content is important in documentation, not formatting.

Every bit of information needs a location.
This location cannot be in a DOCX [http://www.ecma-international.org/publications/standards/Ecma-376.htm] or ODT [https://en.wikipedia.org/wiki/OpenDocument],
because there it is not well accessible (Accessibility).

Certain content can be stored in a text database and reused in other documents via templating (r8d).

Data can be better integrated into text, than into DOCX [http://www.ecma-international.org/publications/standards/Ecma-376.htm] or ODT [https://en.wikipedia.org/wiki/OpenDocument].

From an immediate but naive perspective it may seem easier to compose documents using DOCX [http://www.ecma-international.org/publications/standards/Ecma-376.htm] or ODT [https://en.wikipedia.org/wiki/OpenDocument].
Due to the complex task to bring a big project to a consistent final state, it is not.
More detailed reasons are the topic of this documentation.

Final Version

	rio

	scf

The purpose of this proposal is targeted to the development time.

After the project is over documents are

	archived or

	placed on a web server

The formats usually used, are:

	PDF

	HTML

	DOCX [http://www.ecma-international.org/publications/standards/Ecma-376.htm] or ODT [https://en.wikipedia.org/wiki/OpenDocument]

In case the final version is a printout,
DOCX [http://www.ecma-international.org/publications/standards/Ecma-376.htm] or ODT [https://en.wikipedia.org/wiki/OpenDocument] allow final formatting correction before printing.

Parallelism

Parallel processing is faster than serial processing.
The productivity of a team increases if the team members can work in parallel.

In order for the developer to work independently
he needs to be allowed to make his own decisions.

The decisions get their input from the documentation done by others
and the information generated by the developer himself.

Every developer needs to understand, how the product will be used.

The external requirements are kept

	minimal

	mostly soft, i.e. modifiable

	with good rationale, especially for hard requirements

If a developer has an idea, a conflict or an issue, he can adapt the source code
and the documentation and the tests, also of others, to resolve the issue by himself.

The chief developer only

	does initial coordination

	observes, i.e. reviews the changes, as other developers do, too.

The format of the documentation matters regarding independence:

	changes can be traced in the VCS [https://en.wikipedia.org/wiki/Comparison_of_version_control_software] (Traceability)

	information can more easily be found via grep [https://en.wikipedia.org/wiki/Grep]-like tools over all files (Accessibility)

	a final document file can be decomposed into separate source files for developers

Traceability

Trace changes

	rnn

	s9v

Documentation is the description of the system in a human language.
It is meant for humans. Nevertheless it is not a novel, but more like code.

	It defines variables and values (concepts) like code.

	It undergoes the same changes as code.

	It has dependencies and a hierarchical structure like code.

Team members need to be able to follow changes.
A version control system (VCS [https://en.wikipedia.org/wiki/Comparison_of_version_control_software]) like SVN [https://en.wikipedia.org/wiki/Apache_Subversion] or GIT [https://en.wikipedia.org/wiki/Git] is needed to trace the changes in documentation.

Trace dependencies

	rw9

	s0t, san

Code uses identifiers for its items (variables, functions, classes, …).

The documentation can use IDs to mark an item (paragraph, figure, table, …).

The ID can be used to reference an item from somewhere else: m-n.
A special case is 1-n, e.g. the ID of a header comprises all IDs of the paragraphs below.

Flat addressing: Relations are not reflected in the names and especially not in the IDs.
Especially the IDs do not have an order.
Flat and unordered IDs are more flexible,
because they are independent of the changes in structure and order.

Accessibility

Hypertext

	r33

	san

The productivity depends much on how fast information can be found.

Access time: The time to access stored information.

The access time is fastest for information stored in the brain.
The brain of most humans is very slow to memorize, though.
And the brain forgets.
Normally one can expect only the current topic to be present for immediate processing.

Related information can be quickly looked up,
if the documentation contains references that immediatly can be jumped to (hypertext [https://en.wikipedia.org/wiki/Hypertext]).
The importance of this can be seen by the immense success of hypertext [https://en.wikipedia.org/wiki/Hypertext] in the internet.

To allow hypertext [https://en.wikipedia.org/wiki/Hypertext] referenced items must have a unique resource ID (URI [https://en.wikipedia.org/wiki/Uniform_Resource_Identifier]).

Search

	re4

	stq

Another alternative to discover information is via search.

	For small to mediums sized systems normal text search like grep [https://en.wikipedia.org/wiki/Grep] suffices.

	A larger text corpus needs indexing to speed up search.

Since source code and documentation describe the same system,
the same concepts and IDs are likely to occur.
Source code describes the details and is not rephrasing documentation items, though.
The concept names and IDs of documentation are expected more in source code comments than identifiers.

Community

	rj4

	s9o

Community spreads the effort for tooling to more people.

	The commercial model makes more people dependent on one company.
In case of DOCX [http://www.ecma-international.org/publications/standards/Ecma-376.htm] there is no alternative to MS Word,
that renders documents in the same way.
This makes Microsoft a monopoly leading to over-pricing.

	The open source model is a decentralized community effort:
With software there is no effort and therefore no loss in sharing.
One gains the effort of others.

The open source model is preferred, because one has more control.

	one can add a feature if needed

	one can fix a bug immediately

The total effort is less than for the commercial model.

Sustainability

	ref

	sed

The information shall be accessible

	over a long time

	by many people

But if the format is only readable by one of many commercial tools,

	at some point one may not want or be able to pay the license

	some people might use a different tool

If one would like to change the tool one cannot without substantial costs (vendor lock-in [https://en.wikipedia.org/wiki/Vendor_lock-in]).

Because of the sustainability argument, a DOCX document needs to be converted to PDF,
e.g. before sending to someone else or maybe even when checking into a VCS [https://en.wikipedia.org/wiki/Comparison_of_version_control_software].

Further reading:

DOCX [https://www.loc.gov/preservation/digital/formats/fdd/fdd000397.shtml]

ODT [https://www.loc.gov/preservation/digital/formats/fdd/fdd000428.shtml]

Redundancy

	r90

	sgt, s8c

Redundancy: When the same information needs to be maintained at more places.

Less redundancy means higher productivity.

Redundancy

	needs more resources

	more pages, more memory

	more time to read

	more time to write

	more effort when changing something

	leads to inconsistencies

The reasons for redundancy are

	barrier between formats: DOCX and text, computer language and human language

	inability to link to information: no hypertext [https://en.wikipedia.org/wiki/Hypertext]

	inability to exploit functional dependencies: no automation available

	normative boilerplate texts: no automation available

Further reading:

DRY [https://en.wikipedia.org/wiki/Don%27t_repeat_yourself]

Automation

Scripting

	r1p

	sgt, s8c

Why don’t we write code in MS Word or LibreOffice? Because it would be hard to parse away all the formatting.

It does not help to have a library like Office-XML-SDK [https://github.com/OfficeDev/Open-XML-SDK] or DOM [https://en.wikipedia.org/wiki/Document_Object_Model], because the additional complexity
through formatting elements still needs to be dealt with when parsing or creating documentation parts.

A format where formatting is less important and less obtrusive can be handled more easily via scripts.

Templates

	r8d

	

Many internet sites are generated with a mixture of text and a scripting language (PHP, JS, Python, …).
Such templates allow

	to mix text and data or

	to generate text from data.

Text files can easily be generated from templates files.

Quantitative Analysis

Introduction to risk analysis

Risk analysis is basically a simulation.

	Event

	A possible and recurring configuration of values of variables.

	Frequency

	\(f\). How often an event is observed per time interval.

	Probability

	\(p\). Compares the frequency of mutually exclusive values of one variable. At least one value must occur (exhaustiveness).

	Rating

	\(v\). Judge an event by associating a value expressing harm/benefit, loss/profit or advantage/disadvantage.

	Risk

	\(r\). The risk is frequency * rating:

\[r_{e} = f_{e} v_{e}\]

The total risk \(R\) sums over all events:

\[R = \sum_e r_e\]

Events can depend on other events functionally or statistically.
One can start with the probability for an event once a day and then
follow conditional probability chains to other events.

The risk analysis tries to analyse these dependencies
to get to a more precise estimation of the frequency.

It is hard to get good estimates of frequencies in a complex real world,
because there are

	many variables

	many dependencies

	unknown probabilities

Because the frequencies will be inaccurate,
instead of numbers one can use more imprecise but realistic values,
that need to be defined for the special area (Table 1).

Table 1: Occurrence values for a medical device

	Number

	Category

	Explanation

	1

	Unimaginable

	Never occurs in the lifetime of device

	2

	Improbable

	Occurs once in the lifetime of device

	3

	Remote imaginable

	Occurs once in 100 applications

	4

	Sometimes

	Occurs once in 10 applications

	5

	Probable

	Occurs once per applications

	6

	Frequent

	Occurs multiple times per applications

The rating depends on the

	area (health sector, finance, …) and the

	circumstances (war or peace, rich or poor, …)

Table 2: Severity rating in the health sector.

	Number

	Category

	Explanation

	1

	Non-essential

	Minor injury not needing medical intervention

	2

	Minor

	Small to moderate injury

	3

	Critical

	Severe injury or death

	4

	Catastrophical

	Multiple deaths

In this discrete description, risk value could be

	ac

	acceptable

	alarp

	as low as reasonably practicable

	nac

	not acceptable

The risk function is defined by a table.
The total risk can

	count each risk value occurrence

	count each cell occurrence in the risk table (Table 3)

Table 3: Occurrence/Severity matrix. AC, NAC, ALARP are counts of events in the respective cell.

	Risk R

	
	
	
	

	OS

	1

	2

	3

	4

	6

	ALARP

	NAC

	NAC

	NAC

	5

	ALARP

	ALARP

	NAC

	NAC

	4

	ALARP

	ALARP

	ALARP

	NAC

	3

	AC

	ALARP

	ALARP

	ALARP

	2

	AC

	AC

	ALARP

	ALARP

	1

	AC

	AC

	AC

	ALARP

Countermeasures

	r2m

	

The purpose of the risk analysis is not to make a yes/no decision for a project,
but to derive countermeasures that reduce the risk or prevent harm or financial loss.

The countermeasures change the probability of the events, by changing the causal dependencies between events.

The rating probably will not change, unless circumstances change.

In the Occurrence/Severity example, in Table 3:

	before the measures: events are possibly in the upper right corner

	after the measures: events are ideally only in the lower left corner

	the events in the top/left to right/bottom diagonal have a trade-off
and should be kept “as low as reasonably practicable”

Risk analysis for documenting with RST

	rp5

	

This risk analysis compares to the above introduction to risk analysis in this way:

	Event is a task a developer performs

	Time consumed per event corresponds to severity (per developer)

	Occurrence per developer

Instead of the discrete values, numbers are used for time and occurrence.
The numbers are rough estimates, because they depend a lot:

	on the developer

	on the tools he uses (editor and plugins)

	how well he knows his tools

	which phase the development is in

	how long the project takes

	how much documentation there is

The risk is the effort per developer.

(1)\[R = \sum_{e}v_e f_e\]

Math 1:

	\(e\): event to perform a task

	\(v_e\): time consumed for task

	\(f_e\): how often per day the task \(e\) occurs

	\(R\): total effort per developer

The countermeasures taken lead to:

	RST for documentation instead of MS Word or Libre Office

Events

The following events have a

	one-line description

	occurrence \(f\)

	countermeasure

	the effort \(v_1\) [min] before countermeasure

	the effort \(v_2\) [min] after countermeasure

As a check for the estimation \(\sum f v_1\) should give \(1d = 8h = 480\text{min}\).

The estimates assume a project that takes

	about a year

	has 5 team members

	needs to be consistently documented

	description

	occurences

	measure

	time1/min

	time2/min

	Include documentation in the build system

	1/5/365

	sxr

	0

	10

	Create separate version of documentation file (e.g. doc_1.1.docx)

	1/5/100

	s10

	10

	0

	Look for file and open in editor then open another file in another tool (office application)

	20

	sed

	1

	1/10

	Plan the design of a software component and document it

	1

	s8c

	40

	30

	Review the changes in a documentation file

	1

	s9v

	20

	1

	Look up an ID in a documentation file

	10

	san

	1

	1/60

	Solve an implementation detail or a bug report

	2

	
	100

	100

	Discuss an interface with other team member consulting documentation

	1

	san

	10

	9

	Describe an implementation detail or how a bug was fixed documentation

	2

	san

	30

	20

	Merge contributions to a documentation file from more developers

	1/30

	sxr

	30

	1

	A printout of the documentation shall be started (without printing time)

	1/5/100

	scf

	5

	10

	Create a traceability file that shows how documentation items are linked

	1/5/100

	s0t

	3*480

	1

	Search for all occurrences of a name in all project files

	10

	stq

	4

	1

	Replace all occurrences of a name in all project files

	5

	stq

	4

	1

	Refactor and re-describe parts of code and update documentation

	1

	s8c, san

	30

	20

	Fix a formatting issue

	10

	s45

	1

	1/2

	Check for consistency of a limit values between code and documentation

	1

	s8c

	2

	0

	Make the documentation of automatic tests or a test report of a test run

	1

	sgt

	20

	10

Result

The assumed 1 year project with 5 developers would take only 0.7 years.

	Effort without RST: 486min=1.00000000000000day

	Effort with RST: 332min=0.7day

	Less effort (sa7): -154min=-0.3day

The benefit is not so much due to using a text editor instead of an office application to write documentation.
It is due to a good exploitation of all the possibilities opened by pure text (Requirements on Documentation and Requirements on Project).

System Requirements

Purpose

Propose an alternative to MS Office for technical documentation.

Requirements on Documentation

	sa7

	Productivity

The documentation format increases productivity in comparison to MS Office.

	s9o

	Community, rj4

The documentation format is not new.
The documentation format is supported by a large open source community.

	s9v

	Traceability

It is possible to diff a documentation file with the version control system (VCS [https://en.wikipedia.org/wiki/Comparison_of_version_control_software]).
Therefore it must be text-based.

	scf

	Accessibility

Tools shall be available for conversion to the following formats

	HTML [https://en.wikipedia.org/wiki/HTML]: to make the documentation viewable over the internet

	PDF [https://en.wikipedia.org/wiki/Portable_Document_Format]: to archive a version and for printing

	DOCX [http://www.ecma-international.org/publications/standards/Ecma-376.htm] and ODT [https://en.wikipedia.org/wiki/OpenDocument]: to satisfy existing procedures

The tools shall be

	open-source and community supported

	stable

	san

	Accessibility, Traceability, hyperlinks

The documentation items shall be marked by flat and unordered IDs.

Use these IDs to jump to documentation items inside the editor
via a keyboard shortcut or a mouse click: hypertext.

Support hyperlinks in the formats the documentation can be converted to.

	stq

	Accessibility

Full text search over all files
with regular expressions shall be available from inside the editor for

	source code and

	documentation

	sed

	Sustainability

The documentation can be opened by a normal text editor.

The documentation is easy to read and write in a text editor.

	s45

	Formatting vs Content

Support formatting:

paragraphs, sections with headers
enumerated and bullet lists, footnotes, citations, comments
bold, italic, typeface, hyperlinks
tables, images, figures, code listings, mathematics

The formatting

	is not obtrusive (r9g)

	shall be intuitive

	does not need much learning

Table-like data is stored as text using a format that is

	not too verbose

	easily accessible by scripting (sgt)

	sgt

	Redundancy, r1p

Make it easy to automatically generate parts of documentation

	from source code

	from data

Data shall be usable

	in source code

	in documentation

	s0t

	Traceability

Automatically generate a dependencies file that shows how documentation items are linked.
Warn about missing or duplicate targets.

	s8c

	Redundancy, r8d

Provide means to integrate into the documentation

	defines that are also usable in source code

	calculation results

Requirements on Project

	s10

	Traceability

The project uses a version control system (VCS [https://en.wikipedia.org/wiki/Comparison_of_version_control_software]) like SVN [https://en.wikipedia.org/wiki/Apache_Subversion] or GIT [https://en.wikipedia.org/wiki/Git].

Documentation history is handled by the VCS [https://en.wikipedia.org/wiki/Comparison_of_version_control_software].
Team members follow changes of documentation on the VCS [https://en.wikipedia.org/wiki/Comparison_of_version_control_software].

	sxr

	Automation

The project uses a build system.

Creation of documentation is integrated in the build system.

	s1g

	Redundancy

Whenever something is used twice in code and documentation
let it be generated from a master copy: constants, defines of structs, …

	scs

	Accessibility

All documentation of concern to development is integrated in the text-based documentation.

	risk analysis / motivation

	specification

	design description

	test plan

	issues

	meeting minutes

	…

	sim

	Accessibility

There is a readme document that informs,
where to put and how to find which information.

	seo

	r90

The developer

	only works and cares about the text sources of documentation

	does not spend time in fixing formatting issues of a generated format

	sil

	Parallelism

Developers can work independently.

This is linked to s10. The VCS [https://en.wikipedia.org/wiki/Comparison_of_version_control_software] needs to enable independent development.
A distributed VCS [https://en.wikipedia.org/wiki/Comparison_of_version_control_software] like GIT [https://en.wikipedia.org/wiki/Git] has advantages in this regard.

Design Description

Purpose

An implementation of the System Requirements is described
in a short way with links to motivation further down in the document.

For an illustrative implementation of the following conventions see the end of dcx.py [https://github.com/rstdoc/rstdoc/blob/master/rstdoc/dcx.py]
or the files generated by rstdcx --rest/--stpl smpl, and this documentation itself.

Documentation Format

	dje

	s9v, san, stq, sed, sgt, s8c

Documentation files are text files.

	dio

	dt7, dbz

Use pure RST [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html] as documentation format.
Don’t use Sphinx [http://www.sphinx-doc.org/en/stable/] extension.

	dld

	doe, d03

Place a target ID before paragraphs, figures, list-tables, code listings, maths:

.. _`dx8`:

:dx8: <optionally key words here>

``:dx8:`` is a RST definition that will get special formatting in the generated document.
Else, ``dx8:`` would do, too.
Omitting it, if the ID is not wanted in the generated document.

|dx8| is an example ID.

.. _`dz3`:

.. figure:: _images/smpl.png
 :name:

 |dz3|: Caption here.

Reference via |dz3|.

.. _`dta`:

|dta|: Table legend

.. list-table::
 :name:
 :widths: 20 80
 :header-rows: 1

 * - Bit
 - ...

.. _`dyi`:

|dyi|: Listing showing struct.

.. code-block:: cpp
 :name:

 struct xxx{
 int yyy; //yyy for zzz
 }

.. _`d9x`:

.. math::
 :name:

If headers are referenced across files, add an ID before them, too:

.. _`d99`:

header

Inside the file, headers are automatically targets, by the definition of RST [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html].

The ID

	dfq

	san

The ID within a file

	has only word characters: easily search word under cursor in editor

	is short: easy to memorize

	is lowercase: some editors are case insensitive and it is easier to write in lowercase

	is random, not ordered: no problem when reordering documentation parts

	is not derived from the topic of the paragraph, which is often not well defined and would make the ID long

All IDs that end up in a top level file should start with the same letter.
This way one can immediately tell which top level file the ID is from.
dcx.links_and_tags uses this to color a graph of all the ID dependencies.

Files

	d75

	scs, sim, seo, sil, dt7

Top level files use the extension .rest.

The last line of a top level .rest file must be the following (d1z):

``.. include:: _links_sphinx.rst``

For image substitutions to work place the .. |xxx| image:: _images/xxx.jpg into the top level .rest file.

Sphinx [http://www.sphinx-doc.org/en/stable/] uses an index.rest that become the entry point to the project site.
It includes all top level .rest files for a project-wide table of contents:

.. toctree::
 readme.rest
 ra.rest
 sr.rest
 dd.rest
 tp.rest
 rstdoc.rest

The names of the files are an example.
See Overview for their purpose.

	dfy

	dt7

Included files use the extension .rst.
Include them with:

.. include:: somefile.rst

	d0t

	s9v, s8c

Images (.png, .jpg, .svg,…) are in the _images, or .._images folder.

Images can be generated from tikz [http://mirror.kumi.systems/ctan/graphics/pgf/base/doc/pgfmanual.pdf] files (.tikz) or templates of it (.tikz.stpl).

	dyn

	s8c, dv6

.rest, .rst, .tikz files can be SimpleTemplate [https://bottlepy.org/docs/dev/stpl.html#simpletemplate-syntax] templates.

Then they have the additional extension

	.stpl, if they can be expanded by themselves

	.tpl, if they are only used by other template files (%include('some.rst.tpl')).
.tpl files can have parameters, which are provided via %include('some.rst.tpl',aparam="test")
.tpl files can be in the same or the parent folder, without the need for a path in %include().

In this documentation ra.rest.stpl includes utility.rst.tpl.

Tools

	dru

	scf

The tools are all open source and community driven.

	dmm

	scf

Pandoc [https://pandoc.org/] is used to convert to HTML, PDF, DOCX, ODT

	dsn

	Editor, san

A text editor is used for writing.
It should support CTags [https://github.com/universal-ctags/ctags/blob/master/parsers/rst.c]’s .tags files

	d13

	sgt, s8c

Python [https://www.python.org/] is used

	for scripting and (da0)

	for templates (dv6)

	d23

	sgt

Data is preferably written directly in Python.
Any text format that is readable in Python works, too.
Very table-like data is written in yaml [http://yaml.org/] or json [https://www.json.org/] (dg8).

	dwm

	doe, san, sgt, s8c

rstdoc [https://github.com/rstdoc/rstdoc]’s rstdcx [https://github.com/rstdoc/rstdoc/blob/master/rstdoc/dcx.py] is used to

	create .tags and _links_xxx.rst files to support hypertext (d03)

	generated files from source code using the gen file (dhy)

	expand template files .stpl (dv6)

	convert .tikz files to .png and place into ./_images or ../_images

	dqf

	sxr, scf, sgt, s8c

As build system waf [https://github.com/waf-project/waf] is used (dw8).

	d7o

	Sphinx [http://www.sphinx-doc.org/en/stable/], Project Site, scf

Optionally Sphinx [http://www.sphinx-doc.org/en/stable/] can be used to create a central HTML site for the project
with links to all the top level files (.rest) (d1w)

	df3

	Latex [https://en.wikipedia.org/wiki/LaTeX], scf

LaTex [https://en.wikipedia.org/wiki/LaTeX] to

	convert RST [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html] directly to PDFs or

	create graphics using tikz [http://mirror.kumi.systems/ctan/graphics/pgf/base/doc/pgfmanual.pdf]

Motivation

Light Markup

	dt7

	light markup [https://en.wikipedia.org/wiki/Lightweight_markup_language]

LaTex [https://en.wikipedia.org/wiki/LaTeX] and other document markup languages [https://en.wikipedia.org/wiki/List_of_document_markup_languages] are not easy to learn (s45) and have not enough constraints [https://everypageispageone.com/2016/06/05/why-we-need-constrainable-lightweight-markup-languages/].

The alternatives are light markup [https://en.wikipedia.org/wiki/Lightweight_markup_language] formats:

	sgt, s8c: It is easier to generate parts of the documentation with scripts from source code or source code comments.
It allows mixing source code with documentation for better cohesion and less redundancy.

	s45: It can be easily learned, because it restricts itself to essential elements.

	s45: The elements are of conceptual nature (header, list item,) not actual formatting.
The formatting is done when creating the final document. This makes it easier
to keep a consistent formatting when more people work on the documentation.

	s9v: As text, it is perfect for version control systems.
One can commit documentation changes together with the according source code changes.
It allows to keep outdated information hidden in the VCS [https://en.wikipedia.org/wiki/Comparison_of_version_control_software] history and not lying around and messing up.
It is easy to review documentation changes.
To make it even more easy one should try to have

	one sentence per line

	one clause per line or

	one list item per line

	s0t: It is easier to extract, which items link to which other ones, especially if the team agrees on facilitating conventions.

	san, stq, sed: It can be edited with a text editor, i.e. the same tool developers work with all the time.

	stq: It is accessible to grep [https://en.wikipedia.org/wiki/Grep].

	san: Ctags [https://github.com/universal-ctags/ctags/blob/master/parsers/rst.c] can be used to jump around while editing.

	sed: It is very readable.

	scf: It can be translated to several final formats, e.g.

	HTML (Pandoc [https://pandoc.org/], Sphinx [http://www.sphinx-doc.org/en/stable/])

	PDF (Pandoc [https://pandoc.org/], Sphinx [http://www.sphinx-doc.org/en/stable/])

	ODT, DOCX (Pandoc [https://pandoc.org/]): Sphinx [http://www.sphinx-doc.org/en/stable/] extension to RST [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html] cannot be converted to these formats.

Sphinx [http://www.sphinx-doc.org/en/stable/] converts all files with an extension provided in conf.py.
.rest is chosen for such main files. .rst is then for included files.

Further reading:

https://www.slant.co/topics/589/~best-markup-languages

https://everypageispageone.com/2016/06/05/why-we-need-constrainable-lightweight-markup-languages/

http://ericholscher.com/blog/2016/mar/15/dont-use-markdown-for-technical-docs/

http://zverovich.net/2016/06/16/rst-vs-markdown.html

https://gist.github.com/dupuy/1855764

RST

	dbz

	RST [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html]

There are many light markup [https://en.wikipedia.org/wiki/Lightweight_markup_language] formats.
But especially restructuredText (RST [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html])

	s45: has rich format support (e.g. table formats)

	s45: is extensible

	sgt, s8c: is best for python scripting

	scf: has a very good tooling support

	Pandoc [https://pandoc.org/]

	Sphinx [http://www.sphinx-doc.org/en/stable/]

	Docutils [http://docutils.sourceforge.net/]

	rstdoc [https://github.com/rstdoc/rstdoc]

http://rst.ninjs.org can be used to play with RST [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html].

For the conversion from RST [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html] to DOCX [http://www.ecma-international.org/publications/standards/Ecma-376.htm] currently the best tool is Pandoc [https://pandoc.org/],
Pandoc [https://pandoc.org/] only takes pure RST [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html] and does not know
about the Sphinx [http://www.sphinx-doc.org/en/stable/] extensions like :ref:.

Hypertext

	doe

	hypertext in text, r33

rstdoc [https://github.com/rstdoc/rstdoc]’s rstdcx [https://github.com/rstdoc/rstdoc/blob/master/rstdoc/dcx.py] generates a .tags file for target IDs
CTags [https://github.com/universal-ctags/ctags/blob/master/parsers/rst.c]’s .tags files are supported by many editors.
With .tags files your editor can jump around in RST [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html] files,
as if marked up hypertext (HTML).

	d03

	hypertext in HTML, PDF and DOCX, r33

To reference paragraphs, figures, mathematics and tables
use RST [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html]’s replacement substitutions [http://docutils.sourceforge.net/docs/ref/rst/directives.html#replacement-text]:

This is text that references |dx8|.

As the RST [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html]’s link format differs between HTML, PDF and DOCX,
rstdoc [https://github.com/rstdoc/rstdoc]’s rstdcx [https://github.com/rstdoc/rstdoc/blob/master/rstdoc/dcx.py] generates separate files
with definitions for the replacement substitutions [http://docutils.sourceforge.net/docs/ref/rst/directives.html#replacement-text]:

_links_docx.rst:

.. |targetid| replace:: `targetid <file.docx#targetid>`_

_links_pdf.rst:

.. |targetid| replace:: `targetid <file.pdf#targetid>`_

_links_sphinx.rst:

.. |targetid| replace:: :ref:`targetid <file.html#targetid>`

	d1z

	Pandoc bug

Substitutions cannot be in included files, until the Pandoc include [https://github.com/jgm/pandoc/issues/4160] bug is corrected.
For the _links_docx.txt this helps:

cat file.rst _links_docx.txt | sed -e's/.. include:: _links_sphinx.txt//g' | pandoc -f rst -t docx -o file.docx

The last line of a top level .rest file must be:

``.. include:: _links_sphinx.rst``

For image substitutions to work place the .. |xxx| image:: xxx.jpg into the top level .rest file.

Editor

If most work is done on text, it becomes important to have a very flexible and powerful editor.
One should invest a some time to know the editor well.

There are a lot of editors [http://build-me-the-docs-please.readthedocs.io/en/latest/Using_Sphinx/ToolsForReStructuredText.html] that work well with RST, e.g. Emacs [http://docutils.sourceforge.net/docs/user/emacs.html].

Vim

vim_py3_rst [https://github.com/rpuntaie/vim_py3_rst]

vim-table-mode [https://github.com/dhruvasagar/vim-table-mode]

riv.vim [https://github.com/gu-fan/riv.vim]

Atom

atom-ctags #better: https://github.com/rpuntaie/atom-ctags

language-restructuredtext

rst-preview-pandoc

table-editor

rst-snippets

atom-build #better: https://github.com/rpuntaie/atom-build

atom-build-waf

find-and-replace-under-cursor

atom-build and atom-ctags were modified to allow finding files
by putting the relevant subdirectory into Atom’s project paths.

Scripting

	da0

	scripting

Python [https://www.python.org/] is a good choice as a scripting language, because it

	is easy

	is powerful

	has many libraries

	has a huge community

Build System

	dw8

	waf [https://github.com/waf-project/waf]

waf [https://github.com/waf-project/waf] (dqf) is a good choice as build system:

	It is python

	It is made part of the project, i.e. not an external dependency

	It supports many computer languages

	rstdoc [https://github.com/rstdoc/rstdoc]’s dcx.py [https://github.com/rstdoc/rstdoc/blob/master/rstdoc/dcx.py] is a waf [https://github.com/waf-project/waf] plugin

As a general automation tool to doit [https://github.com/pydoit/doit] would be a good choice,
but it does not provide abstraction for compiler handling.

make [https://www.gnu.org/software/make/manual/make.html] works, too, but it is less flexible.

Generated documentation

	dhy

	gen

To generate documentation files from source code,
rstdoc [https://github.com/rstdoc/rstdoc]’s rstdcx [https://github.com/rstdoc/rstdoc/blob/master/rstdoc/dcx.py]

	Looks into a gen file, to see which source files lead to which target file.
The gen file can be

	python code defining from_to_fun_kw = [[fromfile,tofile,fun,kw],...] or

	from|to|fun|kwargs lines

fun means gen_fun() (or just gen() if empty) that can be found commented #gen_fun in fromfile.

	Gets the # def gen_fun(lns,**kw) python function. fun comes from the gen file, the rest must match exactly.
def gen_fun marks the end of the function.

	Executes the def gen_fun(lns,**kw) function with the lines of the source file and the kw from the gen file

	Saves the result in the target files

In waf [https://github.com/waf-project/waf]’s wscript_build, call gen_files() to initiate interpretation of the gen file.

See the gen file of this documentation as an example.

Templating

	dv6

	templating text

Python has many template libraries. An important one is Jinja2 [http://jinja.pocoo.org/].
But they are targeted especially to HTML and consider aspects (e.g. security),
that are not of relevance for technical documentation.

bottle [https://bottlepy.org]’s SimpleTemplate [https://bottlepy.org/docs/dev/stpl.html#simpletemplate-syntax] is inverted Python (text un-enclosed, code enclosed)
without any further restrictions to the Python code.

	It is easy to learn

	Very powerful

	dpv

	templating tikz

One can use it to replace native control structures.

This smpl.tikz:

[thick]
\draw (0,0) grid (3,3);
\foreach \c in {(0,0), (1,0), (2,0), (2,1), (1,2)}
 \fill \c + (0.5,0.5) circle (0.42);

can become smpl.tikz.stpl:

[thick]
\draw (0,0) grid (3,3);
%for cx,cy in {(0,0), (1,0), (2,0), (2,1), (1,2)}:
 \fill ({{cx+0.5}},{{cy+0.5}}) circle (0.42);
%end

	dhl

	defines for code and documentation

One can have

	limits defined in a python file (specifications.py) and use them in

	a code file template (e.g. specifications.h.stpl)

	and in a documentation file template (e.g. specifications.rest.stpl)

Alternatively one can have

	a code file with limits (e.g. specifications.h)

	parse that code file in the python code
and use the values in the text of a documentation file template
(all in e.g. specifications.rest.stpl)

	drz

	mathematics

One can use

	python mathematics (e.g. sympy [https://github.com/sympy/sympy])

	use it for actual calculations

	expand the formulas [http://docs.sympy.org/latest/tutorial/printing.html] in the text

	use the calculated values in the text

%from sympy.abc import *
%from sympy import Eq, latex
%pythagoras=Eq(c**2,a**2+b**2)
Pythagorean theorem

.. math:

 {{latex(pythagoras)}}

is very important.

becomes:

Pythagorean theorem

.. math:

 c^{2} = a^{2} + b^{2}

is very important.

Data

	dg8

	data

Data needs to be text, because then changes can be traced via VCS [https://en.wikipedia.org/wiki/Comparison_of_version_control_software].

Since the scripting and templating is done with Python,
data written in Python is most easily accessible,
e.g. via and import.

If the data is more table-like:

yaml [http://yaml.org/] is good for direct editing, because it is

	very non-verbose and

	almost can be used directly as RST

	changes can be best followed without too much syntax

json [https://www.json.org/] is appropriate, if the data

	is generated

	needs to be read and possibly edited by humans

	needs to be rendered on HTML via javascript

XML is only appropriate for a predefined schema,
that is unlikely to change throughout the development time.

There are alternatives for XML’s XPath [https://en.wikipedia.org/wiki/XPath] in yaml [http://yaml.org/] and json [https://www.json.org/]:

	Python and yaml [http://yaml.org/]: dpath [https://pypi.python.org/pypi/dpath]

	json [https://www.json.org/]: jsonpath [https://github.com/h2non/jsonpath-ng]

Project Site

	d1w

	project site

A central HTML project site can be a central point of team coordination.
One can have

	an issue file

	minutes file for meetings

	a project coordination file with plans, deadlines

	a progress file per developer

	…

This keeps all the data together in

	one format and

	one tool chain

	one repository

Test Plan

Purpose

The System Requirements are tested by

	the motivations in the Risk Analysis

	this whole documentation

The tests here concentrate on rstdoc.

Test Driver

There are only automatic tests.

pytest [https://docs.pytest.org/en/latest/] and tox [https://tox.readthedocs.io/en/latest/] are used to run the tests.

[tox]
envlist=py38
[testenv]
commands=
 py.test --doctest-modules --junit-xml=test.xml -k 'not test_with_images[rst_odt'
deps=
 gitpython
 txdir
 cffi
 cairocffi
 pillow
 pyx
 pyfca
 pygal
 cairosvg
 numpy
 matplotlib
 sympy
 pint
 pyyaml
 svgwrite
 drawsvg
 stpl
 pypandoc
 docutils
 sphinx
 sphinx_bootstrap_theme
 mock
 virtualenv
 pytest-coverage

To run tox [https://tox.readthedocs.io/en/latest/], in the root folder, enter:

tox

To run pytest [https://docs.pytest.org/en/latest/], in the root folder, enter:

py.test

To have a test coverage report, enter:

py.test --cov=rstdoc --cov-report term-missing

Test Coverage

The tests aim to produce 100% test coverage.

The current test coverage is this.

============================= test session starts ==============================
platform linux -- Python 3.10.9, pytest-7.2.0, pluggy-1.0.0
rootdir: /home/roland/mine/rstdoc, configfile: pytest.ini
plugins: toolbox-0.4, Flask-Dance-6.2.0, anyio-3.6.2, mock-3.10.0, xonsh-0.13.3, cov-4.0.0
collected 518 items

rstdoc/dcx.py [4%]
rstdoc/reflow.py . [4%]
rstdoc/retable.py .. [4%]
test/test_dcx.py ... [15%]
.. [29%]
.. [43%]
.. [56%]
.. [70%]
.. [84%]
............................ [90%]
test/test_fromdocx.py . [90%]
test/test_rst_tables.py [96%]
test/test_unretable.py [100%]

---------- coverage: platform linux, python 3.10.9-final-0 -----------
Name Stmts Miss Cover Missing

rstdoc/__init__.py 2 0 100%
rstdoc/dcx.py 2116 202 90% 50-51, 55-56, 59-60, 278-279, 283-284, 289-291, 296-297, 313-318, 353-354, 734-736, 741, 786, 790-791, 799, 802, 835, 867-872, 896, 951, 1014, 1028-1029, 1130, 1149, 1156, 1158-1160, 1178-1179, 1220-1221, 1231-1232, 1265, 1277-1279, 1304-1305, 1337-1338, 1461-1463, 1618-1620, 1628-1629, 1639-1640, 1670, 1679, 1693-1694, 1700-1701, 1919-1920, 1926-1927, 1945, 1954, 2021, 2177-2178, 2182, 2206-2207, 2461, 2532, 2550, 2565-2569, 2588, 2593, 2595, 2717, 2754-2756, 2816-2818, 2826-2834, 2853, 2904-2905, 2934, 2955-2957, 3038, 3089, 3101, 3179, 3328, 3386, 3509-3510, 3525-3526, 3570, 3803-3809, 3848-3881, 3921, 3935, 3994, 4004, 4008-4013, 4153-4154, 4164-4171, 6402, 6476-6477, 6492-6493, 6726-6727, 6756, 6770, 6779, 6800-6801, 6804
rstdoc/fromdocx.py 164 135 18% 83-86, 90, 94-95, 99, 110-134, 139-142, 147-159, 164-180, 185-206, 211-213, 228-304, 323-333, 337
rstdoc/listtable.py 107 11 90% 211-233, 236, 252-254, 263
rstdoc/reflow.py 167 14 92% 365-395, 398, 400, 402, 416-418, 427
rstdoc/reimg.py 83 14 83% 120-122, 150-164, 167, 181-183, 187, 196
rstdoc/retable.py 267 30 89% 238, 318-319, 425, 486-528, 532
rstdoc/untable.py 131 13 90% 88, 102-103, 243-259, 262, 275-277, 287
rstdoc/wafw.py 86 58 33% 36-41, 47-55, 60-63, 70-84, 88-95, 98-107, 111-114, 117-128

TOTAL 3123 477 85%

======================= 518 passed in 1271.21s (0:21:11) =======================

Tests

rstdcx, dcx.py

	test_lnkname

	

Test the extraction of the name for different kinds of targets:

header, figure, list-table, table,
code-block, code, math, definition (:id:)

	test_dcx_regex

	

Test the regular expressions used in dcx.py.

	test_rstincluded

	

Tests dcx.rstincluded.

	test_init

	

Tests the initialization of a sample directory tree
with the --stpl tmp or --rest tmp options.

	test_dcx_alone_samples

	

Tests calling rstdcx/dcx.py without parameters.

	test_dcx_in_out

	

Tests calling rstdcx/dcx.py
with in-file or standard in to standard out.

	test_dcx_out_file

	

Tests calling rstdcx/dcx.py
with in-file and out-file and out type parameter.

	test_make_samples

	

Tests building the samples with Makefile

	test_waf_samples

	

Tests running Waf on the sample projects.

	test_docparts_after

	

Tests dcx.doc_parts with different parameters for documentation extraction.

	test_convert_with_images_no_outinfo

	

Tests dcx.convert with images on the fly in rest.stpl files
for different targets.

	test_include_cmd

	

Tests rstdcx with -I option and .rest.stpl files generating images on the fly
and embedding for HTML and DOCX.

RST tables

These tests mostly originate from the history of vim-rst-tables [https://github.com/ossobv/vim-rst-tables-py3].

	testCreateTable

	

Test retable.reformat_table by creating a grid table from lines where columns are separated by two blanks.

	testReformatEmpty

	

Tests retable.reformat_table with a table with an empty cell.

	testReflowTable

	

Tests retable.reflow_table with a table whose start line was reduced.

	testReflowWithReplacements

	

Tests retable.reflow_table with a table containing replacement substitutions
with successive rows reduced in length.

	testReflowWithLineBreak

	

Tests retable.reflow_table with a successive line lengthened.

	testReTitle

	

Tests retable.re_title on a fixture file.

	testCreateFromData

	

Tests creation of table from data (retable.create_rst_table).

rstdoc

Purpose

rstdoc(1) Version 1.8.2 | rstdoc

See background and documentation [https://rstdoc.readthedocs.io/en/latest/].

Many companies use DOCX [http://www.ecma-international.org/publications/standards/Ecma-376.htm]
and thus produce an information barrier.
Working with text is more integrated in the (software) development process.
A final format can be DOCX [http://www.ecma-international.org/publications/standards/Ecma-376.htm], but, at least during development, text is better.

Sphinx [http://www.sphinx-doc.org/en/stable/]
is an extension of Docutils [http://docutils.sourceforge.net/]
used for many (software) projects,
but it does not support creation of DOCX [http://www.ecma-international.org/publications/standards/Ecma-376.htm] files, which certain companies demand.
Pandoc [https://pandoc.org/]
does support DOCX [http://www.ecma-international.org/publications/standards/Ecma-376.htm], but does not support the Sphinx extensions,
hence :ref: and the like cannot be used.

This python package supports working with
RST [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html]
as documentation format without depending on Sphinx.

	link RST documents using
substitutions [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html#substitution-definitions]
(generated in _links_xxx.r?st)

	create a .tags file to jump around in an editor that support
ctags [http://ctags.sourceforge.net/FORMAT]

	RST [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html] handling with python: reformat/create RST [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html] tables

	post-process Pandoc’s conversion from DOCX [http://www.ecma-international.org/publications/standards/Ecma-376.htm] to RST [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html]

	pre-process Pandoc’s conversion from RST [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html] to DOCX [http://www.ecma-international.org/publications/standards/Ecma-376.htm]

	Support in building with WAF [https://github.com/waf-project/waf] (or Makefile)

	expand
SimpleTemplate [https://bottlepy.org/docs/dev/stpl.html#simpletemplate-syntax]
template files .stpl

	graphics files (.tikz, .svg, .dot, .uml, .eps or .stpl thereof, and .pyg)
are converted to .png
and placed into ./_images or <updir>/_images, if there, else into current directory.

	a gen file specifies how RST [http://docutils.sourceforge.net/docs/ref/rst/restructuredtext.html] should be generated from source code files (see dcx.py)

The conventions used are shown

	by the example produced via rstdcx --rest/--stpl/--over/--ipdt smplfldr

	by the documentation sources that can be found at
https://github.com/rstdoc/rstdoc/tree/master/doc

pip install rstdoc installs:

	Module

	CLI Script

	Description

	dcx

	rstdcx, rstdoc

	create .tags, labels and links

	fromdocx

	rstfromdocx

	Convert DOCX to RST using Pandoc

	listtable

	rstlisttable

	Convert RST grid tables to list-tables

	untable

	rstuntable

	Converts certain list-tables to paragraphs

	reflow

	rstreflow

	Reflow paragraphs and tables

	reimg

	rstreimg

	Rename images referenced in the RST file

	retable

	rstretable

	Transforms list tables to grid tables

rstdcx

restructuredText sources are split into two types of files:
main files considered by Sphinx, and included files.
Which of .rest or .rst is main or included is determined
by source_suffix in a <root>/conf.py
or opposite to the extension of the included _links_sphinx.r?st file:

	if you have .. include:: /_links_sphinx.rest,
then the main file extension is .rst

rstdoc creates documentation (PDF, HTML, DOCX)
from restructuredText (.rst, .rest) using either

	Pandoc [https://pandoc.org]

	Sphinx [http://www.sphinx-doc.org]

	Docutils
configurable [http://docutils.sourceforge.net/docs/user/config.html]

rstdoc and rstdcx command line tools call dcx.py.
which

	creates .tags to jump around with the editor

	handles .stpl [https://bottlepy.org/docs/dev/stpl.html] files

	processes gen files (see examples produced by –rest)

	creates links files (_links_docx.r?st, _links_sphinx.r?st, …)

	forwards known files to either Pandoc, Sphinx or Docutils

See example at the end of dcx.py.
It is supposed to be used with a build tool.
make and waf examples are included.

	Initialize example tree (add --rstrest to make .rst main and .rest included files):

$./dcx.py --rest repo #repo/doc/{sy,ra,sr,dd,tp}.rest files OR
$./dcx.py --stpl repo #repo/doc/{sy,ra,sr,dd,tp}.rest.stpl files
$./dcx.py --ipdt repo #repo/pdt/AAA/{i,p,d,t}.rest.stpl files
$./dcx.py --over repo #.rest all over

	Only create .tags and _links_xxx.r?st:

$ cd repo
$ rstdoc

	Create the docs (and .tags and _links_xxx.r?st) with make:

$ make html #OR
$ make epub #OR
$ make latex #OR
$ make docx #OR
$ make pdf

The latter two are done by Pandoc, the others by Sphinx.

	Create the docs (and .tags and _links_xxx.r?st) with
waf [https://github.com/waf-project/waf]:

Instead of using make one can load dcx.py (rstdoc.dcx) in
waf [https://github.com/waf-project/waf].
waf also considers all recursively included files,
such that a change in any of them results in a rebuild.
All files can have an additional .stpl extension to use
SimpleTemplate [https://bottlepy.org/docs/dev/stpl.html].

$ waf configure #also copies the latest version of waf in here
$ waf –docs docx,sphinx_html,rst_odt
$ #or you provide –docs during configure to always compile the docs

	rst_xxx: via
rst2xxx.py [http://docutils.sourceforge.net/docs/user/tools.html]

	sphinx_xxx: via Sphinx [http://www.sphinx-doc.org] and

	just xxx: via Pandoc [https://pandoc.org].

The following image language files should be parallel to the .r?st files.
They are automatically converted to .png
and placed into ./_images or <updir>/_images or else parallel to the file.

	.tikz or .tikz.stpl.
This needs LaTex.

	.svg [http://svgpocketguide.com/book/] or .svg.stpl

	.dot or .dot.stpl

This needs graphviz [https://graphviz.gitlab.io/gallery/].

	.uml [http://plantuml.com/command-line] or .uml.stpl

This needs plantuml [http://plantuml.com/command-line] .
Provide either

	plantuml.bat with e.g. java -jar "%~dp0plantuml.jar" %* or

	plantuml sh script with
java -jar `dirname $BASH_SOURCE`/plantuml.jar "$@"

	.eps or .eps.stpl embedded postscript files.

This needs inkscape [https://inkscape.org/en/].

	.pyg contains python code that produces a graphic.
If the python code defines a to_svg or a save_to_png function,
then that is used, to create a png.
Else the following is tried

	pyx.canvas.canvas from the
pyx [http://pyx.sourceforge.net/manual/graphics.html] library or

	cairocffi.Surface from
cairocffi [https://cairocffi.readthedocs.io/en/stable/overview.html]

	matplotlib [https://matplotlib.org].
If matplotlib.pyplot.get_fignums()>1
the figures result in <name><fignum>.png

The same code or the file names can be used in a .r?st.stpl file
with pngembed() or dcx.svgembed() to embed in html output.

{{!svgembed("egpyx.pyg",outinfo)}}
<%
ansvg=svgembed('''
from svgwrite import cm, mm, drawing
d=drawing.Drawing(viewBox=('0 0 300 300'))
d.add(d.circle(center=(2*cm, 2*cm), r='1cm', stroke='blue', stroke_width=9))
'''.splitlines(),outinfo)
%>
{{!ansvg}}

Conventions

Files

	main files and included files: .rest, .rst or vice versa.
.txt are for literally included files (use :literal: option).

	templates separately rendered : *.rest.stpl and *.rst.stpl
template included: *.rst.tpl
Template lookup is done in
. and .. with respect to the current file.

	with %include('some.rst.tpl', param="test") with optional parameters

	with %globals().update(include('utility.rst.tpl'))
if it contains only definitions

Links

	.. _`id`: are reST targets.
reST targets should not be template-generated.
The template files should have a higher or equal number of targets
than the generated file,
in order for tags to jump to the template original.
If one wants to generate reST targets,
then this should better happen in a previous step,
e.g. with gen files mentioned above.

	References use replacement
substitutions [http://docutils.sourceforge.net/docs/ref/rst/directives.html#replacement-text]:
|id|.

	If you want an overview of the linking (traceability),
add .. include:: _traceability_file.rst
to index.rest or another .rest parallel to it.
It is there in the example project, to include it in tests.
_traceability_file.{svg,png,rst} are all in the same directory.

Link files are created in link roots, which are folders where the first main file
(.rest or .rst) is encoutered during depth-first traversal.
Non-overlapping link root paths produce separately linked file sets.

.. include:: /_links_sphinx.r?st, with the one initial /
instead of a relative or absolute path,
will automatically search upward for the _links_xxx.r?st file
(_sphinx is replaced by what is needed by the wanted target when the docs are generated).

Sphinx conf.py is augmented by configuration for Pandoc and Docutils.
It should be where the input file is, or better at the project root
to be usable with waf [https://github.com/waf-project/waf].

See the example project created with --rest/stpl/ipdt/over
and the sources of the documentation of
rstdoc [https://github.com/rstdoc/rstdoc].

rstdcx CLI

rstdcx is the same as rstdoc.

Without parameters: creates |substitution| links and .tags ctags for reST targets.

With two or three parameters: process file or dir to out file or dir
through Pandoc, Sphinx, Docutils (third parameter):

	html, docx, odt, pdf, … uses Pandoc.

	rst_html, rst_odt, rst_pdf, … uses
rst2html [http://docutils.sourceforge.net/0.6/docs/user/tools.html], …

	sphinx_html, sphinx_pdf, … uses Sphinx.
Sphinx provides a nice entry point via the
sphinx bootstrap theme [https://github.com/ryan-roemer/sphinx-bootstrap-theme].

4th parameter onward become python defines usable in .stpl files.

Pdf output needs latex. Else you can make odt or docx and use

	win: swriter.exe --headless --convert-to pdf Untitled1.odt

	linux: lowriter --headless --convert-to pdf Untitled1.odt

Inkscape (.eps, .svg), Dot (.dot), Planuml (.uml), latex (.tex,.tikz)
are converted to .png into ./_images or <updir>/_images or ‘.’.
Any of the files can be a SimpleTemplate template (xxx.yyy.stpl).

Configuration is in conf.py or ../conf.py.

rstdoc --stpl|--rest|--ipdt|-over create sample project trees.

--stpl with .rest.stpl template files,
--rest with only a doc folder with .rest files,
--ipdt with inform-plan-do-test enhancement cycles
--over with .rest files all over the project tree including symbolic links

Examples

Example folders (see wscript and Makefile there):

rstdoc --rest <folder> [--rstrest]
rstdoc --stpl <folder> [--rstrest]
rstdoc --ipdt <folder> [--rstrest]
rstdoc --over <folder> [--rstrest]

Use --rstrest to produce .rst for the main file,
as .rest is not recognized by github/gitlab,
who also don’t support file inclusion,
so no need for two extension anyway.

Examples usages with the files generated by rstdoc --stpl tmp:

cd tmp/doc
rstdcx #expand .stpl and produce .tag and _links_xxx files

#expand stpl and append substitutions (for simple expansion use ``stpl <file> .``)
rstdcx dd.rest.stpl - rest # expand to stdout, appending dd.html substitutions, to pipe to Pandoc
rstdcx dd.rest.stpl - html. # as before
rstdcx dd.rest.stpl - docx. # expand to stdout, appending dd.docx substitutions, to pipe to Pandoc
rstdcx dd.rest.stpl - newname.docx. # expand template, appending substitutions for target newname.docx
rstdcx dd.rest.stpl - html # expand to stdout, already process through Pandoc to produce html on stdout
rstdcx dd.rest.stpl # as before
rstdcx sy.rest.stpl - rst_html # expand template, already process through Docutils to produce html on stdout
stpl sy.rest.stpl | rstdcx - - sy.html. # appending sy.html substitutions, e.g. to pipe to Pandoc
stpl dd.rest.stpl | rstdcx - - dd.html # appending tp.html substitutions and produce html on stdout via Pandoc
rstdcx dd.rest.stpl dd.rest # expand into dd.rest, appending substitutions for target dd.html
rstdcx dd.rest.stpl dd.html html # expand template, process through Pandoc to produce dd.html
rstdcx dd.rest.stpl dd.html # as before
rstdcx dd.rest.stpl dd.html rst_html # expand template, already process through Docutils to produce dd.html
rstdcx dd.rest.stpl dd.docx # expand template, process through Pandoc to produce dd.docx
rstdcx dd.rest.stpl dd.odt pandoc # expand template, process through Pandoc to produce dd.odt
rstdcx dd.rest.stpl dd.odt # as before
rstdcx dd.rest.stpl dd.odt rst_odt # expand template, process through Docutils to produce dd.odt
rstdcx dd.rest.stpl dd.odt rst # as before
rstdcx . build html # convert current dir to build output dir using pandoc
rstdcx . build sphinx_html # ... using sphinx (if no index.rest, every file separately)

#Sphinx is not file-oriented
#but with rstdcx you need to provide the files to give Sphinx ``master_doc`` (normally: index.rest)
#Directly from ``.stpl`` does not work with Sphinx
rstdcx index.rest ../build/index.html sphinx_html # via Sphinx the output directory must be different

#convert the graphics and place the into _images or <updir>/_images
#if no _images directory exists they will be placed into the same directory
rstdcx egcairo.pyg
rstdcx egdot.dot.stpl
rstdcx egeps.eps
rstdcx egother.pyg
rstdcx egplt.pyg
rstdcx egpygal.pyg
rstdcx egpyx.pyg
rstdcx egsvg.svg.stpl
rstdcx egtikz.tikz
rstdcx egtikz1.tikz
rstdcx eguml.uml

#Convert graphics to a png (even if _images directory exists):
rstdcx eguml.uml eguml.png

#Files to other files:

rstdoc dd.rest.stpl dd.rest
rstdoc dd.rest.stpl dd.html html
rstdoc dd.rest.stpl dd.html
rstdoc sr.rest.stpl sr.html rst_html
rstdoc dd.rest.stpl dd.docx
rstdoc dd.rest.stpl dd.odt pandoc
rstdoc dd.rest.stpl dd.odt
rstdoc sr.rest.stpl sr.odt rst_odt
rstdoc sr.rest.stpl sr.odt rst
rstdoc index.rest build/index.html sphinx_html

#Directories to other directories with out info:

rstdoc . build html
rstdoc . build sphinx_html

Grep with python re in .py, .rst, .rest, .stpl, .tpl:

rstdoc --pygrep inline

Grep for keyword lines containing ‘png’:

rstdoc --kw png

Default keyword lines:

.. {{{kw1,kw2
.. {kw1,kw2}
{{_ID3('kw1 kw2')}}
%__ID3('kw1 kw2')
:ID3: kw1 kw2

API

import rstdoc.dcx as dcx

The functions in dcx.py
are available to the gen_xxx(lns,**kw) functions (dhy).

	dcx.is_project_root_file

	

def is_project_root_file(filename):

return filename=='.git' or filename=='waf' or filename=='Makefile' or filename.lower().startswith('readme')

Identifies the root of the project by a file name contained there.

	dcx.DPI

	

DPI = 600

Used for png creation.

	dcx.g_config

	

g_config = None

g_config can be used to inject a global config.
This overrides the defaults
and is overriden by an updir conf.py.

	dcx.cmd

	

def cmd(cmdlist, **kwargs):

Runs cmdlist via subprocess.run and return stdout.
In case of problems RstDocError is raised.

	param cmdlist

	command as list

	param kwargs

	arguments forwarded to subprocess.run()

	dcx.new_cwd

	

@contextlib.contextmanager
def new_cwd(apth):

Use as:

with new_cwd(dir):
 #inside that directory

	dcx.startfile

	

def startfile(filepath):

Extends the Python startfile to non-Windows platforms

	dcx.up_dir

	

def up_dir(match,start=None):

Find a parent path producing a match on one of its entries.
Without a match an empty string is returned.

	param match

	a function returning a bool on a directory entry

	param start

	absolute path or None

	return

	directory with a match on one of its entries

>>> up_dir(lambda x: False)
''

	dcx.tempdir

	

def tempdir():

Make temporary directory and register it to be removed with atexit.

This can be used inside a .stpl file
to create images from inlined images source,
place them in temporary file,
and include them in the final .docx or .odt.

	dcx.run_inkscape

	

def run_inkscape(infile, outfile, dpi=DPI):

Uses inkscape commandline to convert to .png

	param infile

	.svg, .eps, .pdf filename string
(for list with actual .eps or .svg data use dcx.svgpng or dcx.epspng)

	param outfile

	.png file name

	dcx.rst_sphinx

	

@infile_cwd
def rst_sphinx(
 infile, outfile, outtype=None, **config
):

Run Sphinx on infile.

	param infile

	.txt, .rst, .rest filename

	param outfile

	the path to the target file (not target directory)

	param outtype

	html, latex,… or any other sphinx writer

	param config

	keys from config_defaults

>>> olddir = os.getcwd()
>>> cd(dirname(__file__))
>>> cd('../doc')

>>> infile, outfile = ('index.rest',
... '../build/doc/sphinx_html/index.html')
>>> rst_sphinx(infile, outfile) #doctest: +ELLIPSIS
>>> exists(outfile)
True

>>> infile, outfile = ('dd.rest',
... '../build/doc/sphinx_html/dd.html')
>>> rst_sphinx(infile, outfile) #doctest: +ELLIPSIS
>>> exists(outfile)
True

>>> infile, outfile = ('dd.rest',
... '../build/doc/sphinx_latex/dd.tex')
>>> rst_sphinx(infile, outfile) #doctest: +ELLIPSIS
>>> exists(outfile)
True

>>> cd(olddir)

	dcx.g_include

	

g_include = []

One can append paths to rstdoc.dcx.g_include for stpl expansion
or finding other files.

	dcx.rst_pandoc

	

@infile_cwd
def rst_pandoc(
 infile, outfile, outtype, **config
):

Run Pandoc on infile.

	param infile

	.txt, .rst, .rest filename

	param outfile

	the path to the target document

	param outtype

	html,…

	param config

	keys from config_defaults

	dcx.rst_rst2

	

@infile_cwd
def rst_rst2(
 infile, outfile, outtype, **config
):

Run the rst2xxx docutils fontend tool on infile.

	param infile

	.txt, .rst, .rest filename

	param outfile

	the path to the target document

	param outtype

	html,…

	param config

	keys from config_defaults

	dcx.PageBreakHack

	

def PageBreakHack(destination_path):

This introduces a PageBreak style into content.xml
to allow the following raw page break of opendocument odt:

.. raw:: odt

 <text:p text:style-name="PageBreak"/>

This is no good solution,
as it introduces an empty line at the top of the new page.

Unfortunately the following does not work
with or without text:use-soft-page-breaks="true"

.. for docutils
.. raw:: odt

 <text:p text:style-name="PageBreak"/>

.. for pandoc
.. raw:: opendocument

 <text:p text:style-name="PageBreak"/>

According to
C066363e.pdf [https://standards.iso.org/ittf/PubliclyAvailableStandards/c066363_ISO_IEC_26300-1_2015.zip]
it should work.

See utility.rst.tpl in the --stpl created example project tree.

	dcx.svgpng

	

@png_post_process_if_any
@normoutfile
@readin
def svgpng(infile, outfile=None, *args, **kwargs):

Converts a .svg file to a png file.

	param infile

	a .svg file name or list of lines

	param outfile

	if not provided the input file with new extension
.png in ./_images, <updir>/_images or parallel to infile.

	dcx.texpng

	

@png_post_process_if_any
@partial(in_temp_if_list, suffix='.tex')
@infile_cwd
def texpng(infile, outfile=None, *args, **kwargs):

Latex has several graphic packages, like

	tikz

	chemfig

that can be converted to .png with this function.

For .tikz file use dcx.tikzpng.

	param infile

	a .tex file name or list of lines
(provide outfile in the latter case)

	param outfile

	if not provided, the input file with
.png in ./_images, <updir>/_images or parallel to infile.

	dcx.tikzpng

	

tikzpng = normoutfile(readin(_tikzwrap(_texwrap(texpng))))

Converts a .tikz file to a png file.

See dcx.texpng.

	dcx.dotpng

	

@png_post_process_if_any
@partial(in_temp_if_list, suffix='.dot')
@infile_cwd
def dotpng(
 infile,
 outfile=None,
 *args,
 **kwargs
):

Converts a .dot file to a png file.

	param infile

	a .dot file name or list of lines
(provide outfile in the latter case)

	param outfile

	if not provided the input file with new extension
.png in ./_images, <updir>/_images or parallel to infile.

	dcx.umlpng

	

@png_post_process_if_any
@partial(in_temp_if_list, suffix='.uml')
@infile_cwd
def umlpng(
 infile,
 outfile=None,
 *args,
 **kwargs
):

Converts a .uml file to a png file.

	param infile

	a .uml file name or list of lines
(provide outfile in the latter case)

	param outfile

	if not provided the input file with new extension
.png in ./_images, <updir>/_images or parallel to infile.

	dcx.epspng

	

@png_post_process_if_any
@partial(in_temp_if_list, suffix='.eps')
@infile_cwd
def epspng(
 infile,
 outfile=None,
 *args,
 **kwargs):

Converts an .eps file to a png file using inkscape.

	param infile

	a .eps file name or list of lines
(provide outfile in the latter case)

	param outfile

	if not provided the input file with new extension
.png in ./_images, <updir>/_images or parallel to infile.

	dcx.pygpng

	

@png_post_process_if_any
@normoutfile
@readin
@infile_cwd
def pygpng(
 infile, outfile=None, *args,
 **kwargs
):

Converts a .pyg file to a png file.

.pyg contains python code that produces a graphic.
If the python code defines a to_svg or a save_to_png function,
then that is used.
Else the following is tried

	pyx.canvas.canvas from the
pyx [http://pyx.sourceforge.net/manual/graphics.html] library or

	svgwrite.drawing.Drawing from the
svgwrite [https://svgwrite.readthedocs.io] library or

	cairocffi.Surface from
cairocffi [https://cairocffi.readthedocs.io/en/stable/overview.html#basic-usage]

	matplotlib [https://matplotlib.org].
If matplotlib.pyplot.get_fignums()>1
the figures result <name><fignum>.png

	param infile

	a .pyg file name or list of lines
(provide outfile in the latter case)

	param outfile

	if not provided the input file with new extension
.png in ./_images, <updir>/_images or parallel to infile.

	dcx.pygsvg

	

@readin
@infile_cwd
def pygsvg(infile, *args, **kwargs):

Converts a .pyg file or according python code to an svg string.

.pyg contains python code that produces an SVG graphic.
Either there is a to_svg() function or
the following is tried

	io.BytesIO containing SVG, e.g via cairo.SVGSurface(ioobj,width,height)

	io.StringIO containing SVG

	object with attribute _repr_svg_

	svgwrite.drawing.Drawing from the
svgwrite [https://svgwrite.readthedocs.io] library or

	cairocffi.SVGSurface from
cairocffi [https://cairocffi.readthedocs.io/en/stable/overview.html#basic-usage]

	matplotlib [https://matplotlib.org].

	param infile

	a .pyg file name or list of lines

	dcx.svgembed

	

def svgembed(
 pyg_or_svg, outinfo, *args, **kwargs
):

If outinfo ends with html, SVG is embedded.
Else the SVG is converted to a temporary image file
and included in the DOCX or ODT zip.

	dcx.pngembed

	

def pngembed(
 pyg_or_pngfile, outinfo, *args, **kwargs
):

If outinfo ends with html, the PNG is embedded.
Else the PNG is included in the DOCX or ODT zip.

	dcx.dostpl

	

@infile_cwd
def dostpl(
 infile,
 outfile=None,
 lookup=None,
 **kwargs
):

Expands an .stpl [https://bottlepy.org/docs/dev/stpl.html] file.

The whole rstdoc.dcx namespace is forwarded to the template code.

.stpl is unrestrained python:

	e.g. one can create temporary images,
which are then included in the final .docx of .odt
See dcx.tempdir.

	param infile

	a .stpl file name or list of lines

	param outfile

	if not provided the expanded is returned

	param lookup

	lookup paths can be absolute or relative to infile

>>> infile = ['hi {{2+3}}!']
>>> dostpl(infile)
['hi 5!']

	dcx.dorst

	

def dorst(
 infile,
 outfile=io.StringIO,
 outinfo=None,
 fn_i_ln=None,
 **kwargs
):

Default interpreted text role is set to math.
The link lines are added to the rest file or rst lines

	param infile

	a .rest, .rst, .txt file name or list of lines

	param outfile

	None and ‘-’ mean standard out.

If io.StringIO, then the lines are returned.
|xxx| substitutions for reST link targets
in infile are appended if no _links_sphinx.rst there

	param outinfo

	specifies the tool to use.

	html, docx, odt,… via pandoc

	sphinx_html,… via sphinx

	rst_html,… via rst2xxx frontend tools

General format of outinfo:

[infile/][tgtfile.]docx[.]

infile is used, if the function infile param are lines.

tgtfile is target file used in links.

tgtfile is the target file to create.
A final dot tells not to create the target file.
This is of use in the command line
if piping a file to rstdoc then to pandoc.
The doc will only be generated by pandoc,
but links need to know the doc to link to already before that.

	param fn_i_ln

	(fn, i, ln) of the .stpl
with all stpl includes sequenced (used by dcx.convert)

>>> olddir = os.getcwd()
>>> cd(dirname(__file__))
>>> cd('../doc')

>>> dorst('dd.rest') #doctest: +ELLIPSIS
['.. default-role:: math\n', ...

>>> dorst('ra.rest.stpl') #doctest: +ELLIPSIS
['.. default-role:: math\n', ...

>>> dorst(['hi there']) #doctest: +ELLIPSIS
['.. default-role:: math\n', '\n', 'hi there\n', ...

>>> dorst(['hi there'], None,'html') #doctest: +ELLIPSIS
<!DOCTYPE html>
...

>>> drst=lambda x,y: dorst(x,y,None,pandoc_doc_optref={'docx':'--reference-doc doc/reference.'+y.split('.')[1]})
>>> dorst('ra.rest.stpl','ra.docx') #doctest: +ELLIPSIS
>>> exists('ra.docx')
True
>>> rmrf('ra.docx')
>>> exists('ra.docx')
False
>>> rmrf('ra.rest.stpl.rest')
>>> exists('ra.rest.stpl.rest')
False

>>> dorst(['hi there'],'test.html') #doctest: +ELLIPSIS
>>> exists('test.html')
True
>>> rmrf('test.html')
>>> exists('test.html')
False
>>> rmrf('rest.rest.rest')
>>> exists('rest.rest.rest')
False

>>> dorst(['hi there'],'test.odt','rst') #doctest: +ELLIPSIS
>>> exists('rest.rest.rest')
True
>>> rmrf('rest.rest.rest')
>>> exists('rest.rest.rest')
False
>>> exists('test.odt')
True
>>> rmrf('test.odt')
>>> exists('test.odt')
False
>>> cd(olddir)

	dcx.convert

	

def convert(
 infile,
 outfile=io.StringIO,
 outinfo=None,
 **kwargs
):

Converts any of the known files.

Stpl files are forwarded to the next converter.

The main job is to normalized the input params,
because this is called from dcx.main and via Python.
It forwards to the right converter.

Examples:

>>> olddir = os.getcwd()
>>> cd(dirname(__file__))
>>> cd('../doc')

>>> convert([' ',' hi {{2+3}}!'], outinfo='rest')
[' .. default-role:: math\n', '\n', ' \n', ' hi 5!\n', '\n']

>>> convert([' ',' hi {{2+3}}!']) #doctest: +ELLIPSIS
['<!DOCTYPE html>\n', ...]
>>> rmrf('rest.rest.rest')

>>> infile, outfile, outinfo = ([
... "newpath {{' '.join(str(i)for i in range(4))}} rectstroke showpage"
...],'tst.png','eps')
>>> 'tst.png' in convert(infile, outfile, outinfo) #doctest: +ELLIPSIS
True
>>> exists('tst.png')
True
>>> rmrf('tst.png')
>>> exists('tst.png')
False

>>> convert('ra.rest.stpl') #doctest: +ELLIPSIS
['<!DOCTYPE html>\n', ...

>>> cnvrt=lambda x,y: convert(x,y,None,pandoc_doc_optref={'docx':'--reference-doc doc/reference.'+y.split('.')[1]})
>>> cnvrt('ra.rest.stpl','ra.docx')
>>> exists('ra.rest.rest')
True
>>> rmrf('ra.rest.rest')
>>> exists('ra.rest.rest')
False
>>> exists('ra.docx')
True
>>> rmrf('ra.docx')
>>> exists('ra.docx')
False

>>> convert('dd.rest', None,'html') #doctest: +ELLIPSIS
<!DOCTYPE html>
...
>>> exists('dd.rest.rest')
True
>>> rmrf('dd.rest.rest')
>>> exists('dd.rest.rest')
False
>>> cd(olddir)

	param infile

	any of .tikz, .svg, .dot, .uml, .eps, .pyg
or else stpl is assumed. Can be list of lines, too.

	param outfile

	- means standard out,
else a file name, or None for automatic (using outinfo),
or io.StringIO to return lines instead of stdout

	param outinfo

	html, sphinx_html, docx, odt, file.docx,…
interpet input as rest, else specifies graph type

	dcx.convert_in_tempdir

	

convert_in_tempdir = in_temp_if_list(infile_cwd(convert))

Same as dcx.convert,
but creates temporary dir for a list of lines infile argument.

>>> tmpfile = convert_in_tempdir("""digraph {
... %for i in range(3):
... "From {{i}}" -> "To {{i}}";
... %end
... }""".splitlines(), outinfo='dot')
>>> stem_ext(tmpfile)[1]
'.png'
>>> tmpfile = convert_in_tempdir("""
... This is re{{'st'.upper()}}
...
... .. _`xx`:
...
... xx:
... text
...
... """.splitlines(), outinfo='rst_html')
>>> stem_ext(tmpfile)[1]
'.html'

	dcx.rindices

	

def rindices(regex, lns):

Return the indices matching the regular expression regex.

	param regex

	regular expression string or compiled

	param lns

	lines

>>> lns=['a','ab','b','aa']
>>> [lns[i] for i in rindices(r'^a\w*', lns)]==['a', 'ab', 'aa']
True

	dcx.rlines

	

def rlines(regex, lns):

Return the lines matched by regex.

	param regex

	regular expression string or compiled

	param lns

	lines

	dcx.doc_parts

	

def doc_parts(
 lns,
 relim=r"^\s*r?'''([\w.:]*)\s*\n*$",
 reid=r"\s(\w+)[(:]|(\w+)\s\=",
 reindent=r'[^#/\s]',
 signature=None,
 prefix=''
):

doc_parts() yields doc parts delimited by relim regular expression
possibly with id, if reid matches

If start and stop differ use regulare expression | in relim.

	There is no empty line between doc string
and preceding code lines that should be included.

	There is no empty line between doc string
and succeeding code lines that should be included.

	Included code lines end with an empty line.

In case of __init__() the ID can come from the class line
and the included lines can be those of __init__(),
if there is no empty line between the doc string
and class above as well as _init__() below.

If the included code comes only from one side of the doc string,
have an empty line at the other side.

Immediately after the initial doc string marker
there can be a prefix, e.g. classname..

	param lns

	list of lines

	param relim

	regular expression marking lines enclosing the documentation.
The group is a prefix.

	param reid

	extract id from preceding or succeeding non-empty lines

	param reindent

	determines start of text

	param signature

	if signature language is given the preceding
or succeeding lines will be included

	param prefix

	prefix to make id unique, e.g. module name. Include the dot.

>>> with open(__file__) as f:
... lns = f.readlines()
... docparts = list(doc_parts(lns, signature='py'))
... doc_parts_line = rlines('doc_parts', docparts)
>>> doc_parts_line[1]
':doc_parts:\n'

	dcx.rstincluded

	

@_memoized
def rstincluded(
 fn,
 paths=(),
 withimg=False,
 withrest=False
):

Yield the files recursively included from an RST file.

	param fn

	file name without path

	param paths

	paths where to look for fn

	param withimg

	also yield image files, not just other RST files

	param withrest

	rest files are not supposed to be included

>>> olddir = os.getcwd()
>>> cd(dirname(__file__))
>>> list(rstincluded('ra.rest',('../doc',)))
['ra.rest.stpl', '_links_sphinx.rst']
>>> list(rstincluded('sr.rest',('../doc',)))
['sr.rest', '_links_sphinx.rst']
>>> list(rstincluded('meta.rest',('../doc',)))
['meta.rest', 'files.rst', '_traceability_file.rst', '_links_...']
>>> 'dd.rest' in list(rstincluded(
... 'index.rest',('../doc',), False, True))
True
>>> cd(olddir)

	dcx.pair

	

def pair(alist, blist, cmp):

pair two sorted lists
where the second must be at least as long as the first

	param alist

	first list

	param blist

	second list longer or equal to alist

	param cmp

	compare function

>>> alist=[1,2,4,7]
>>> blist=[1,2,3,4,5,6,7]
>>> cmp = lambda x,y: x==y
>>> list(pair(alist,blist,cmp))
[(1, 1), (2, 2), (None, 3), (4, 4), (None, 5), (None, 6), (7, 7)]

>>> alist=[1,2,3,4,5,6,7]
>>> blist=[1,2,3,4,5,6,7]
>>> cmp = lambda x, y: x==y
>>> list(pair(alist, blist, cmp))
[(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7)]

	dcx.gen

	

def gen(
 source,
 target=None,
 fun=None,
 **kw
):

Take the gen_[fun] functions
enclosed by #def gen_[fun](lns,**kw) to create a new file.

	param source

	either a list of lines or a path to the source code

	param target

	either save to this file
or return the generated documentation

	param fun

	use #gen_<fun>(lns,**kw): to extract the documentation

	param kw

	kw arguments to the gen_<fun>() function

>>> source=[i+'\\n' for i in """
... #def gen(lns,**kw):
... # return [l.split('#@')[1] for l in rlines(r'^\s*#@', lns)]
... #def gen
... #@some lines
... #@to extract
... """.splitlines()]
>>> [l.strip() for l in gen(source)]
['some lines', 'to extract']

	dcx.parsegenfile

	

def parsegenfile(genpth):

Parse the file genpth which is either

	python code or

	has format

sourcefile | targetfile | suffix | kw paramams or {}

suffix refers to gen_<suffix>.

The yields are used for the dcx.gen function.

	param genpth

	path to gen file

	dcx.RstFile.__init__

	

class RstFile:
 def __init__(self, reststem, doc, tgts, lnks, nlns):

Contains the targets for a .rst or .rest file.

	param reststem

	rest file this doc belongs to (without extension)

	param doc

	doc belonging to reststem,
either included or itself (.rest, .rst, .stpl)

	param tgts

	list of Tgt objects yielded by dcx.RstFile.make_tgts.

	param lnks

	list of (line index, target name (|target|)) tuples

	param nlns

	number of lines of the doc

	dcx.RstFile.make_tgts

	

@staticmethod
def make_tgts(
 lns,
 doc,
 counters=None,
 fn_i_ln=None
):

Yields ((line index, tag address), target, link name)
of lns of a restructureText file.
For a .stpl file the linkname comes from the generated RST file.

	param lns

	lines of the document

	param doc

	the rst/rest document for tags

	param counters

	if None, the starts with
{“.. figure”:1,”.. math”:1,”.. table”:1,”.. code”:1}

	fn_i_ln

	(fn, i, ln) of the .stpl with all stpl includes sequenced

	dcx.links_and_tags

	

def links_and_tags(
 scanroot='.'
):

Creates _links_xxx.rst files and a .tags.

	param scanroot

	directory for which to create links and tags

>>> olddir = os.getcwd()
>>> cd(dirname(__file__))
>>> rmrf('../doc/_links_sphinx.rst')
>>> '_links_sphinx.rst' in ls('../doc')
False

>>> links_and_tags('../doc')
>>> '_links_sphinx.rst' in ls('../doc')
True
>>> cd(olddir)

	dcx.grep

	

def grep(
 regexp=rexkw,
 dir=None,
 exts=set(['.rst','.rest','.stpl','.tpl','.adoc','.md','.wiki','.py','.jl','.lua','.tex',
 '.js', '.h','.c','.hpp','.cpp','.java','.cs','.vb','.r','.sh','.vim','.el',
 '.php','.sql','.swift','.go','.rb','.m','.pl','.rs','.f90','.dart','.bib',
 '.yml','.mm','.d','.lsp','.kt','.hs','.lhs','.ex','.scala','.clj']),
 **kwargs
):

Uses python re to find regexp and return
[(file,1-based index,line),...]
in dir (default: os.getcwd()) for exts files

	param regexp

	default is ‘^s*.. {’

	param dir

	default is current dir

	param exts

	the extension of files searched

def yield_with_kw (kws, fn_ln_kw=None, **kwargs):

Find keyword lines in fn_ln_kw list or using grep(),
that contain the keywords in kws.

Keyword line are either of:

.. {{{kw1,kw2
.. {kw1,kw2}
{{_ID3('kw1 kw2')}}
%__ID3('kw1 kw2')
:ID3: kw1 kw2

.. can also be two comment chars of popular programming languages.
This is due to dcx.rexkw, which you can change.
See also dcx.grep() for the keyword parameters.

	param kws

	string will be split by non-chars

	param fn_ln_kw

	list of (file, line, keywords) tuples
or regexp for grep()

>>> list(yield_with_kw('a',[('a/b',1,'a b'),('c/d',1,'c d')]))
[(0, ['a/b', 1, 'a b'])]
>>> list(yield_with_kw('a c',[('a/b',1,'a b'),('c/d',1,'c d')]))
[]
>>> list(yield_with_kw('a',[('a/b',1,'a b'),('c/d',1,'a c d')]))
[(0, ['a/b', 1, 'a b']), (1, ['c/d', 1, 'a c d'])]
>>> kwargs={'dir':normjoin(dirname(__file__),'../test/fixtures')}
>>> kws = 'svg'
>>> len(list(yield_with_kw(kws,**kwargs)))
6
>>> kws = 'png'
>>> len(list(yield_with_kw(kws,**kwargs)))
7

	dcx.Counter.__init__

	

class Counter:
 def __init__(self, before_first=0):

Counter object.

	param before_first

	first-1 value

>>> myc = Counter()
>>> myc()
1
>>> myc()
2

	dcx.x

	

gpdtid = pdtid
def pdtAAA(pdtfile,dct,pdtid=pdtid,
 pdtfileid=lambda x:'ipdt'[int(x[0])]):

pdtAAA is for use in an .stpl document:

% pdtAAA(__main_file__,globals())

See the example generated with:

rstdoc --ipdt

	param pdtfile

	file path of pdt

	param dct

	dict to take up the generated defines

	param pdtid

	function returning the ID for the pdt cycle
or regular expression with group for full path
or regular expression for just the base name without extension (pdtok)

	param pdtfileid

	extracts/maps a file base name to one of the letters ipdt.
E.g. to have the files in order one could name them {0,1,2,3}.rest.stpl,
and map each to one of ‘ipdt’.

A pdt is a project enhancement cycle with its own documentation.
pdt stands for

	plan: why

	do: specification

	test: tests according specification

Additionally there should be an

	inform: non-technical purpose for or from external people.

There can also be only the inform document, if the pdt item is only informative.

The repo looks like this (preferred):

project repo
 pdt
 ...
 AAA
 i*.rest.stpl
 p*.rest.stpl
 d*.rest.stpl
 t*.rest.stpl

or:

project repo
 pdt
 ...
 AAA.rst.stpl

In the first case, the UID starts with {i,p,d,t}AAA.
This is useful to trace related items by their plan-do-test-aspect.

Further reading: pdt [https://github.com/rpuntaie/pdt]

pdtAAA makes these Python defines:

	[x]AAA returns next item number as AAABB. Use: {{[x]AAA('kw1')}}

	[x]AAA, _[x]AAA__, _[x]AAA___, … returns headers. Use: {{_[x]AAA_('header text')}}

	__[x]AAA, same as _[x]AAA, but use: %__[x]AAA('kw1') (needs _printlist in dct)

	__[x]AAA_, __[x]AAA__, __[x]AAA___, … Use: %__[x]AAA_('header text')

A, B are base36 letters and x is the initial of the file.
The generated macros do not work for indented text, as they produce line breaks in RST text.

>>> dct={'_printlist':str}
>>> pdtfile = "a/b/a.rest.stpl"
>>> pdtAAA(pdtfile,dct,pdtid=r'.*/(.)\.rest\.stpl')
>>> dct['_a']('x y').strip()
'.. {a01 x y}\\n\\na01: **x y**'
>>> dct['__a']('x y').strip() #needs _printlist
"['\\\\n.. {a02 x y}\\\\n\\\\na02: **x y**', '\\\\n']"
>>> dct={}
>>> pdtfile = "pdt/000/d.rest.stpl"
>>> pdtAAA(pdtfile,dct)
>>> dct['_d000']('x y').strip()
'.. {d00001 x y}\\n\\nd00001: **x y**'
>>> dct={}
>>> pdtfile = "a/b/003.rest.stpl"
>>> pdtAAA(pdtfile,dct)
>>> dct['_003']('x y').strip()
'.. {00301 x y}\\n\\n00301: **x y**'
>>> dct['_003_']('x y')
'\\n.. {003 x y}\\n\\n003 x y\\n======='
>>> pdtfile="a/b/003/d.rest.stpl"
>>> pdtAAA(pdtfile,dct)
>>> dct['_003']('x y').strip()
'.. {00301 x y}\\n\\n00301: **x y**'
>>> dct['_d003']('x y').strip()
'.. {d00301 x y}\\n\\nd00301: **x y**'
>>> dct['_003_']('x y')
'\\n.. {003 x y}\\n\\n003 x y\\n======='
>>> dct['_d003_']('x y')
'\\n.. {d003 x y}\\n\\nd003 x y\\n========'

	dcx.index_toctree

	

def index_toctree(index_file):

Construct:

.. toctree::
 file1
 file2

for the sphinx index file,
i.e. index.rest.stpl or index.rst.stpl.
Use like:

{{! index_toctree(__file__) }}

	dcx.initroot

	

def initroot(
 rootfldr
 ,sampletype
):

Creates a sample tree in the file system.

	param rootfldr

	directory name that becomes root of the sample tree

	param sampletype

	either ‘ipdt’ or ‘stpl’ for templated sample trees, or ‘rest’ or ‘over’ for non-templated

See example_rest_tree, example_stpl_subtree, example_ipdt_tree, example_over_tree in dcx.py.

	dcx.index_dir

	

def index_dir(
 root='.'
):

Index a directory.

	param root

	All subdirectories of root that contain a .rest or .rest.stpl file are indexed.

	expands the .stpl files

	generates the files as defined in the gen file (see example in dcx.py)

	generates _links_xxx.rst for xxx = {sphinx latex html pdf docx odt}

	generates .tags with jumps to reST targets

	dcx.main

	

def main(**args):

This corresponds to the rstdcx shell command.

rstfromdocx

rstfromdocx: shell command

fromdocx: rstdoc module

Convert DOCX to RST in a subfolder of current dir, named after the DOCX file.
It also creates conf.py, index.py and Makefile
and copies dcx.py into the folder.

See rstdcx for format conventions for the RST.

There are options to post-process through:

--listtable (--join can be provided)
--untable
--reflow (--sentence True, --join 0)
--reimg

rstfromdocx -lurg combines all of these.

To convert more DOCX documents into the same
RST documentation folder, proceed like this:

	rename/copy the original DOCX to the name you want for the .rest file

	run rstfromdocx -lurg doc1.docx; instead of -lurg use your own options

	check the output in the doc1 subfolder

	repeat the previous 2 steps with the next DOCX files

	create a new folder, e.g. doc

	merge all other folders into that new folder

fromdocx.docx_rst_5 creates 5 different rst files with different postprocessing.

See rstreflow for an alternative proceeding.

API

import rstdoc.fromdocx as fromdocx

	fromdocx.extract_media

	

def extract_media(adocx):

extract media files from a docx file to a subfolder named after the docx

	param adocx

	docx file name

	fromdocx.main

	

def main(**args):

This corresponds to the rstfromdocx shell command.

	param args

	Keyword arguments. If empty the arguments are taken from sys.argv.

listtable, untable, reflow, reimg default to False.

returns: The file name of the generated file.

	fromdocx.docx_rst_5

	

def docx_rst_5(docx ,rename ,sentence=True):

Creates 5 rst files:

	without postprocessing: rename/rename.rest

	with listtable postprocessing: rename/rename_l.rest

	with untable postprocessing: rename/rename_u.rest

	with reflow postprocessing: rename/rename_r.rest

	with reimg postprocessing: rename/rename_g.rest

	param docx

	the docx file name

	param rename

	the new name to give to the converted files (no extension)

	param sentence

	split sentences into new lines (reflow)

rstlisttable

rstlisttable: shell command

listable: rstdoc module

Convert RST grid tables to list-tables.

	Convert grid tables in a file to list-tables. The result is output to stdout:

$ listtable.py input.rst

	Convert several files:

$ listtable.py input1.rst input2.rst
$ listtable.py *.rst

	Use pipe (but cat might not keep the encoding):

$ cat in.rst | listtable.py - | untable.py - > out.rst

Options

	-j, --join

	e.g.002. Join method per column: 0=””.join; 1=” “.join; 2=”\n”.join

API

import rstdoc.listtable as listtable

	listtable.row_to_listtable

	

def row_to_listtable(
 row ,colwidths ,withheader ,join ,indent ,tableend
):

This is the default process_row parameter of listtable.gridtable.

	param row

	list of cells for the row

	param colwidths

	The widths of the columns

	param withheader

	produce :header-:param rows: 1

	param join

	0,1,2 telling how to combine the lines of a cell

	0 = without space

	1 = with space

	2 = keep multi-line

	param indent

	indentation of the table

	param tableend

	True, if end of table

	listtable.gridtable

	

def gridtable(
 data ,join='012' ,process_row=row_to_listtable
):

Convert grid table to list table with same column number throughout.
See listtable.row_to_listtable.

	param data

	from file.readlines() or str.splitlines(True)

	param join

	join column 0 without space, column 1 with space and leave the rest as-is

	param process_row

	creates a list-table entry for the row

	listtable.main

	

def main(**args):

This corresponds to the rstlisttable shell command.

	param args

	Keyword arguments. If empty the arguments are taken from sys.argv.

rstfile is the file name

in_place defaults to False

join defaults to “012”

rstuntable

rstuntable: shell command

untable: rstdoc module

Convert tables of following format to paragraphs with an ID.
The ‘-’ in ID is removed and the ID is made lower case.
Bold is removed.

	ID-XY-00

	text goes here

	ID-XY-01

	text again goes here

If the first entry does contain no word chars or spaces between words,
then the table stays. For a different behavior replace paragraph23.

A file produced from a docx using pandoc or fromdocx.py will
need a pre-processing via rstlisttable to convert grid tables to list-table tables.
This is done in one step with rstfromdocx -lu doc.rst.

API

import rstdoc.untable as untable

	untable.paragraph23

	

def paragraph23(row, nColumns, org, islast, withheader):

For process_row parameter of untable.

For a table of 2 or 3 columns, transform to text.
The first column must hold only one line for an ID.

If not transformed to paragraph, then the orginal text (org) is yielded.

	param row

	list of strings representing the row

	param nColumns

	number of columns in the table

	param org

	orginal text

	param islast

	this call is with the last table entry

	param withheader

	the table has a header line

	untable.untable

	

def untable(lns, process_row=paragraph23):

Transform a RST list-table to normal paragraphs.
The table is supposed to have this format:

	The first column holds an ID.

	Optionally the second column holds keywords.

	The last column holds the details.

	param lns

	list of strings

	param process_row

	called for each row to transform to paragraph

	untable.main

	

def main(**args):

This corresponds to the rstuntable shell command.

	param args

	Keyword arguments. If empty the arguments are taken from sys.argv.

rstfile is the file name

in_place defaults to False

rstreflow

rstreflow: shell command

reflow: rstdoc module

Reflow tables and paragraphs in a rst document produced from a docx.

Post-process a docx in this order:

rstfromdocx doc.docx
rstlisttable doc/doc.rst > doc/tmp.rst
rstuntable doc/tmp.rst > doc/tmp1.rst
rstreflow doc/tmp1.rst > doc/tmp2.rst
rstreimg doc/tmp2.rst > doc/tmp3.rst
rm doc/doc.rst
mv doc/tmp3.rst doc/doc.rst
rm doc/tmp*

Check the intermediate results.

Else one can also do inplace:

rstfromdocx doc.docx
rstlisttable -i doc/doc.rst
rstuntable -i doc/doc.rst
rstreflow -i doc/doc.rst
rstreimg -i doc/doc.rst

Note

DOCX to RST using Pandoc

rstfromdocx -lurg doc.rst converts a docx to RST and
does all the post-processing in one step.

It is adviced, though, to compare the output with the original and do some manual
corrections here and there.

API

import rstdoc.reflow as reflow

	reflow.reflowparagraph

	

def reflowparagraph(p, sentence=False):

Reflow a paragaph using textwarp.wrap. Possibly split sentences.

	param p

	paragraph

	param sentence

	if True lines are split at the end of the sentence

	reflow.reflowparagraphs

	

def reflowparagraphs(lns, sentence=False):

Reflow paragraphs using reflow.reflowparagraph.

	param lns

	lines from rst file

	param sentence

	if True lines are split at the end of the sentence

	reflow.nostrikeout

	

def nostrikeout(lns):

Removes [strikeout:xxx]

	param lns

	lines from rst file

	reflow.rmextrablankline

	

def rmextrablankline(lns):

Remove excessive blank lines.

	param lns

	lines from rst file

	reflow.no3star

	

def no3star(lns):

Removes three stars, as they are not supported by docutils.

	param lns

	lines from rst file

	reflow.noblankend

	

def noblankend(lns):

Removes blanks at the end of the line.

	param lns

	lines from rst file

	reflow.reflowrow

	

class reflowrow():

This replaces listtable.row_to_listtable in listtable.gridtable to reflow a grid table.

	reflow.reflow

	

def reflow(lns, join='1', sentence=False):

Combines all rst corrections of this file.

	param lns

	lines from rst file

	param join

	0 no space, 1 with space, 2 keep as-is

	param sentence

	if True lines are split at the end of the sentence

	reflow.main

	

def main(**args):

This corresponds to the rstreflow shell command.

	param args

	Keyword arguments. If empty the arguments are taken from sys.argv.

rstfile is the file name

in_place defaults to False

rstreimg

rstreimg: shell command

reimg: rstdoc module

Reimg renames the images in the rst file and the files themselves.
It uses part of the document name and a number as new names.

This is useful, if more RST documents converted from DOCX
should be combined in one directory and
the names of the images have no meaning (image13,…).

API

import rstdoc.reimg as reimg

	reimg.reimg

	

def reimg(data, prefix):

This renames all the images in the rst file converted from docx, to avoid

	images having strange names

	collision of image names from different docx

	param data

	rst file read by f.read()

	param prefix

	string prefix for images, should be derived from docx file name

	reimg.main

	

def main(**args):

This corresponds to the rstreimg shell command.

	param args

	Keyword arguments. If empty the arguments are taken from sys.argv.

rstfile is the file name

in_place defaults to False

rstretable

rstretable: shell command

retable: rstdoc module

Transforms list tables to grid tables.

This file also contains the code from
the Vim plugin
vim-rst-tables-py3 [https://github.com/ossobv/vim-rst-tables-py3],
plus some little fixes.
rstdoc is used by the Vim plugin
vim_py3_rst [https://github.com/rpuntaie/vim_py3_rst]
, which replaces
vim-rst-tables-py3 [https://github.com/ossobv/vim-rst-tables-py3].

API

import rstdoc.retable as retable

	retable.title_some

	

title_some = """=-^"'`._~+:;,"""

The rst title order was partly taken from https://github.com/jimklo/atom-rst-snippets
then converted to http://documentation-style-guide-sphinx.readthedocs.io/en/latest/style-guide.html

	retable.reformat_table

	

def reformat_table(lines, row=0, col=0, withheader=0):

Create or reformat a grid table in lines.
The table is delimited by emtpy lines starting from (row,col).

	param lines

	list of strings

	param row

	of cursor position,

	param col

	… as only the lines delimited by an empty line are used

	param withheader

	user the first line as table header

	retable.create_rst_table

	

def create_rst_table(data, withheader=0):

Create a rst table from data

Example:

>>> lns=[['one','two','three'],[1,2,3]]
>>> create_rst_table(lns)
'+-----+-----+-------+\n| one | two | three |\n+-----+-----+-------+\n| 1 | 2 | 3 |\n+-----+-----+-------+'

	param data

	list of list of data

	retable.reflow_table

	

def reflow_table(lines, row=0, col=0):

Adapt an existing table to the widths of the first line.
The table is delimited by emtpy lines starting from (row,col).

lines: list of strings
row: of cursor position,
col: … as only the lines delimited by an empty line are considered

	retable.re_title

	

def re_title(lines, row=0, col=0, down=0):

Adjust the under- or overline of a title.

	param lines

	list of lines

	param row

	of cursor position,

	param col

	… as only the lines delimited by an empty line are considered

	param down

	>0down, <0up

>>> lines="""\
... ###########
... title
... ###########
... """.splitlines()
>>> re_title(lines)
>>> lines
[' #####', ' title', ' #####', ' ']

	retable.retable

	

def retable(lns):

Transform listtable to grid table.
Yield the resulting lines.

	param lns

	list of strings

	retable.main

	

def main(**args):

This corresponds to the rstretable shell command.

	param args

	Keyword arguments. If empty the arguments are taken from sys.argv.

rstfile is the file name

in_place defaults to False

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/file.png

_static/minus.png

_images/_traceability_file.png

_static/plus.png

nav.xhtml

 Table of Contents

 		
 Documentation with RST

 		
 Overview

 		
 Purpose

 		
 Files

 		
 readme.rest

 		
 ra.rest

 		
 sr.rest

 		
 dd.rest

 		
 tp.rest

 		
 rstdoc.rest

 		
 Dependencies

 		
 Risk Analysis

 		
 Purpose

 		
 Qualitative Analysis

 		
 Productivity

 		
 Formatting vs Content

 		
 Final Version

 		
 Parallelism

 		
 Traceability

 		
 Accessibility

 		
 Community

 		
 Sustainability

 		
 Redundancy

 		
 Automation

 		
 Quantitative Analysis

 		
 Introduction to risk analysis

 		
 Countermeasures

 		
 Risk analysis for documenting with RST

 		
 Events

 		
 Result

 		
 System Requirements

 		
 Purpose

 		
 Requirements on Documentation

 		
 Requirements on Project

 		
 Design Description

 		
 Purpose

 		
 Documentation Format

 		
 The ID

 		
 Files

 		
 Tools

 		
 Motivation

 		
 Light Markup

 		
 RST

 		
 Hypertext

 		
 Editor

 		
 Scripting

 		
 Build System

 		
 Generated documentation

 		
 Templating

 		
 Data

 		
 Project Site

 		
 Test Plan

 		
 Purpose

 		
 Test Driver

 		
 Test Coverage

 		
 Tests

 		
 rstdcx, dcx.py

 		
 RST tables

 		
 rstdoc

 		
 Purpose

 		
 rstdoc(1) Version 1.8.2 | rstdoc

 		
 rstdcx

 		
 Conventions

 		
 rstdcx CLI

 		
 Examples

 		
 API

 		
 rstfromdocx

 		
 API

 		
 rstlisttable

 		
 Options

 		
 API

 		
 rstuntable

 		
 API

 		
 rstreflow

 		
 API

 		
 rstreimg

 		
 API

 		
 rstretable

 		
 API

_static/up.png

_static/up-pressed.png

